S-3578, A New Broad Spectrum Parenteral Cephalosporin Exhibiting Potent Activity Against both Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa

 Synthesis and Structure-activity RelationshipsHidenori Yoshizawa, Hikaru Itani, Kou Ishikura, Tadashi Irie, Katsuki Yokoo, Tadatoshi Kubota, Kyoul Minami, Tsutomu Iwaki, Hideaki Miwa and Yasuhiro Nishitani*

Shionogi Research Laboratories, Shionogi \& Co., Ltd., Fukushima-ku, Osaka 553, Japan
(Received for publication June 10, 2002)

Abstract

A series of 7 -aminothiadiazolylcephalosporins having a 1 -(substituted)- 1 H -imidazo[4,5b]pyridinium group at the $\mathrm{C}-3^{\prime}$ position of the cephem nucleus were synthesized and evaluated for in vitro antibacterial activities. Among the cephalosporins prepared in this study, 7β-[2-(5-amino-1,2,4-thiadiazol-3-yl)-2(Z)-ethoxyiminoacetamido]-3-[1-(3-methylaminopropyl)-1 H -imidazo[4,5-b]pyridinium-4-yl]methyl-3-cephem-4-carboxylate sulfate (S-3578) showed extremely potent broad spectrum activity against both Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative bacteria including Pseudomonas aeruginosa, and good water solubility.

The so-called fourth-generation cephalosporins bearing the quaternary ammonium group at the $\mathrm{C}-3^{\prime}$ position, such as cefpirome $(\mathrm{CPR})^{1)}$, cefepime $(\mathrm{CFPM})^{2)}$, cefozopran $(\mathrm{CZOP})^{3)}$, and cefoselis (CFSL) ${ }^{4}$, have potent activity against Gram-positive bacteria and Gram-negative bacteria including Pseudomonas aeruginosa, and are widely used for the treatment of bacterial infections. However, their activity against methicillin-resistant Staphylococcus aureus (MRSA) is not sufficient for clinical use. MRSA as well as Pseudomonas aeruginosa is a nosocomial pathogen associated with serious infections and considerable mortality. Also, the incidence of mixed infection by MRSA and Pseudomonas aeruginosa has been increasing ${ }^{5)}$, and antibacterial agents having high activity against these two pathogens are needed. We attempted to enhance the anti-MRSA activity of $\mathrm{C}-3^{\prime}$ quaternary ammonium cephalosporins while retaining potent activity against Gram-negative bacteria including Pseudomonas aeruginosa. It was a challenge to find such a parenteral C-3' quaternary ammonium cephalosporin with potent activity against MRSA and sufficient water solubility for administration because quaternary ammonium cephems
possessing anti-MRSA activity may not be sufficiently soluble in water due to their zwitterionic structure.

In the course of searching for novel C^{\prime} 'quaternary cephems, we found 7β-[2-(5-amino-1,2,4-thiadiazol-3-yl)-$2(Z)$-ethoxyiminoacetamido]-3-[1H-imidazo[4,5-b]-pyridinium-4-yl]methyl-3-cephem-4-carboxylate (1) (Fig. 1), which showed potent activity against MRSA and Pseudomonas aeruginosa. We further investigated the influence of various substitutions $\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right)$ on both antibacterial activity and water solubility. Eventually, we discovered a promising compound for further evaluation,

Fig. 1.

1: $R_{1}=-E t, R_{2}=-H$
S-3578: $R_{1}=-E t, R_{2}=\sim_{N}{ }^{M e}$ $\mathrm{H} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}$

* Corresponding author: hidenori.yoshizawa@shionogi.co.jp

Scheme 1.

i) POCl_{3} or $\mathrm{Cl}_{2} \mathrm{P}(\mathrm{O}) \mathrm{OPh}$, N -methylmorpholine, ii) AlCl_{3}-anisole, TiCl_{4}-anisole or $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{HCO}_{2} \mathrm{H}$,
iii) Purification by HP-20 chromatography

	R_{1}	R_{2}
a	Boc	-Me
b	Boc	-Et
c	H	-Et
d	Boc	$-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
e	Boc	$-\mathrm{CH}_{2} \mathrm{~F}$
f	Boc	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~F}$

7β-[2-(5-amino-1,2,4-thiadiazol-3-yl)-2(Z)-ethoxyimino-acetamido]-3-[1-(3-methylaminopropyl)-1 H -imidazo[4,5-b]pyridinium-4-yl]methyl-3-cephem-4-carboxylate sulfate (S-3578), which displayed excellent activities against MRSA as well as Pseudomonas aeruginosa, and good water solubility ($>100 \mathrm{mg} / \mathrm{ml}$, at $\mathrm{pH} 2 \sim 7$). Herein, we describe the synthesis and structure-activity relationships of a series of 7β-[2-(5-amino-1,2,4-thiadiazol-3-yl)-2(Z)-alkoxyiminoacetamido]-3-[1-(substituted)-1 H -imidazo[4,5-b]pyridinium-4-yl]methyl-3-cephem-4-carboxylates.

Synthesis

Cephalosporin derivatives bearing the 1-(substituted)$1 H$-imidazo[4,5-b]pyridine at the C-3' position were synthesized as shown in Scheme 1. The cephem nucleus ${ }^{6)}$ (II) was acylated with α-alkoxyiminoacetic $\operatorname{acid}^{7 \sim 9)}(\mathbf{I} \mathbf{\sim} \sim \mathbf{f})$ using phosphorus oxychloride or phenyl
phosphorodichloridate in the presence of N methylmorpholine. The C-3 chloromethyl cephalosporin intermediate (IIIa $\sim \mathbf{f}$) was treated with sodium bromide or sodium iodide to give the corresponding bromide or iodide, which was displaced by the corresponding 1 -(substituted)$1 H$-imidazo[4,5-b]pyridine ($\mathbf{3} \sim 5,7,8,10 \sim 17,28 \sim 34,43$, $44,46,48,49,51,52,55$ or 57) to afford a mixture of IVa $\sim \mathbf{f}$ and a regioisomer $(\mathbf{V a} \sim \mathbf{f})$, which was treated with an AlCl_{3}-anisole, TiCl_{4}-anisole or $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{HCO}_{2} \mathrm{H}$ system. Purification on reversed phase (HP-20) column chromatography yielded cephalosporin derivatives (1, $58 \sim 89$).

The methods of synthesizing 1 -(substituted)- 1 H imidazo $[4,5-b]$ pyridine are shown in Schemes 2~9. 1-tert-Butoxycarbonyl-1H-imidazo[4,5-b]pyridine (3) was prepared by treatment of commercially available 1 H -imidazo[4,5-b]pyridine (2) with di-tert-butyl dicarbonate $\left(\mathrm{Boc}_{2} \mathrm{O}\right)$ (Scheme 2). To introduce an alkyl group onto the 1-position of 1 H -imidazo[4,5-b]pyridine, three methods

Scheme 2.

${ }^{*} \mathrm{Boc}_{2} \mathrm{O}$: di-tert-butyl dicarbonate
(Method A~C in Scheme 3) were employed with reference to Khanna's procedure ${ }^{10)}$. In Method A, compounds $\mathbf{4 \sim 1 7}$ were prepared by a reaction of 1 H -imidazo[4,5-b]pyridine (2) with the corresponding alkyl halide or methanesulfonate ($\mathbf{4}^{\prime} \sim \mathbf{1 7} \mathbf{7}^{\prime}$) in the presence of a base $\left(\mathrm{NaH}\right.$ or $\left.\mathrm{Cs}_{2} \mathrm{CO}_{3}\right)$. In this method, an undesired regioisomer, 3-(substituted)-3 H -imidazo[4,5-b]pyridine was also produced. In Method B, compounds 11, 12, 28~34 were obtained regioselectively by reaction of 3 -amino-2-formamidopyridine (18) and the corresponding aldehyde $(\mathbf{1 9} \sim \mathbf{2 7})$ in the presence of borane-pyridine complex. In Method C, regioselectively reductive alkylation of 2,3-diaminopyridine (35) with aldehyde 20, 36~38 was accomplished by palladiumcatalyzed hydrogenation in a mixture of MeOH and AcOH to give the corresponding diaminopyridine derivatives $\mathbf{3 9 \sim 4 2}$. These compounds $\mathbf{3 9 \sim 4 2}$ were then treated with triethyl orthoformate or trimethyl orthoformate in the presence of p-toluenesulfonic acid (TsOH) catalyst to afford imidazopyridine derivatives 12 or $43 \sim 45$, respectively. Compound 46 was prepared by treatment of ester 9 with $28 \% \mathrm{NH}_{4} \mathrm{OH}$ (Scheme 4). As shown in Scheme 5 , the Boc group of compound $\mathbf{1 2}$ was removed with $\mathbf{~ H C l}-$ MeOH to give amine 47, which was treated with formaldehyde and formic acid to give compound 48. As shown in Scheme 6, the chloride 6 was substituted by cyclopropylamine and the resulting amine was protected with a Boc group by treatment of $\mathrm{Boc}_{2} \mathrm{O}$ in the presence of 4-dimethylaminopyridine (DMAP) catalyst to give 49. As shown in Scheme 7, compound 50 was prepared by the reaction of 11 with (2-bromoethoxy)-triethylsilane in the presence of NaH .

The triethylsilyl group of $\mathbf{5 0}$ was removed with a system of AcOH-THF- $\mathrm{H}_{2} \mathrm{O}$ to afford the alcohol 51 followed by substitution with di-tert-butyl iminodicarboxylate $\left(\mathrm{Boc}_{2} \mathrm{NH}\right)$ by the Mitsunobu reaction using the $1,1^{\prime}-$ (azodicarbonyl) dipiperidine (ADDP)-tributylphosphine system ${ }^{11)}$ to give 52. Compound $\mathbf{5 5}$ was prepared as shown in Scheme 8. Compound $\mathbf{1 1}$ was treated with $\mathrm{HCl}-\mathrm{MeOH}$ to give the amine 53, which was then reacted with
$1 H$-pyrazole-1-[N, N^{\prime}-bis(tert-butoxycarbonyl)]carboxamidine ${ }^{12)}(\mathbf{5 4})$ to afford the guanidine derivative 55. Compound 57 was prepared by the method shown in Scheme 9. Esterification of $\mathbf{4 5}$ was achieved by using diazomethane followed by treatment with $28 \% \mathrm{NH}_{4} \mathrm{OH}$ to afford compound 57.

Results and Discussion

Table 1 shows the antibacterial activities of cephems bearing the 1 H -imidazo[4,5-b]pyridine derivative, and the reference compounds CZOP, CFSL and vancomycin (VCM). MICs were determined by the standard serial twofold dilution method using Mueller-Hinton medium.

Compound 1 showed potent antibacterial activities against Gram-positive bacteria including MRSA and Gramnegative bacteria including Pseudomonas aeruginosa. In particular, the anti-MRSA activity of $\mathbf{1}$ was superior to that of the reference compounds CZOP and CFSL but inferior to that of VCM. The introduction of a methyl group at the 1 -position of imidazopyridine (58) enhanced the antibacterial activity against MRSA and Pseudomonas aeruginosa. Lengthening of the methylene chain (59~61) did not further improve the anti-MRSA activity, but decreased potency against Pseudomonas aeruginosa compared with 58. Compounds 62~64 containing functional groups, such as a difluoromethyl (62), a hydroxy ethyl (63) or a carbamoylmethyl (64) group, were less active than 58 against both MRSA and Pseudomonas aeruginosa. However, compound 65 having an aminoethyl group showed the same activity against MRSA and Pseudomonas aeruginosa as that of 58. Among these compounds ($1,58 \sim 65$), 58 and 65 were the most active against MRSA and Pseudomonas aeruginosa. Although 58 had low water solubility (solubility of $\mathbf{5 8} ;<10 \mathrm{mg} / \mathrm{ml}$), compound 65 had good water solubility due to salt formation (solubility of 65 hydrochloride; $>100 \mathrm{mg} / \mathrm{ml}$). These findings led us to explore a variety of carbon lengths

Scheme 3.
(Method A)

$R_{1} \times$	$\mathrm{R}_{1} \mathrm{X}$	$\mathrm{R}_{1} \mathrm{X}$	$\mathrm{R}_{1} \mathrm{X}$
4' 1-Me	$\mathbf{8}^{\prime} \curvearrowright \mathrm{OSiEt}_{3}$	$12 \mathrm{MsO} \sim^{\sim} \mathrm{N}^{\mathrm{Me}}$	$\text { 15' } \mathrm{MsO}^{\prime \prime}<_{\text {NBoc }}$
5' 1-Et	9' $\widehat{\mathrm{CO}_{2} \mathrm{Et}}$	Boc	
$6 \sim^{\prime}$	$\mathbf{1 0} \mathrm{MsO}^{\sim} \mathrm{NHBoc}$	$13 \mathrm{MsO} \sim$	16' MsO 乙NBoc
7' $\mathrm{Cl}-\mathrm{CHF}_{2}$	11'	14^{\prime}	17^{\prime}

(Method B)

$\mathrm{OHC}-\mathrm{R}_{3}$	$\mathrm{OHC}-\mathrm{R}_{3}$	R_{4}	R_{4}
$19 \mathrm{OHC} \sim_{\sim}$ NBBoc	24	$11 \sim(\sim N H B o c$	31
$20 \mathrm{OHC} \underbrace{\mathrm{Me}}_{\substack{\mathrm{N} \\ \mathrm{Boc}}}$	25	12	
$21 \mathrm{OHC} \sim \mathrm{Me}$ $22 \mathrm{OHC}-\triangle$	$26 \mathrm{OHC} \nabla_{\mathrm{NHBoc}}$	$28 \sim \mathrm{Me}$	
	27	$30 \underbrace{N}_{B o c}$	

(Method C)

	$\mathrm{OHC}-\mathrm{R}_{5}$	$\mathrm{OHC}-\mathrm{R}_{5}$	
20			
36		38	$\mathrm{OHC}{\underset{\mathrm{NHBoc}}{ }}_{\mathrm{CO}_{2} \mathrm{CHPh}_{2}}$

R_{6}	R_{6}
	$41,44$
	42, 45

Scheme 4.

Scheme 5.

Scheme 6.

Scheme 7.

52

Scheme 8.

Scheme 9.

Table 1. Antibacterial activity (MIC, $\mu \mathrm{g} / \mathrm{ml}$) of $\mathbf{1 , 5 8} \sim \mathbf{6 5}$, CZOP, CFSL and VCM.

$\begin{array}{crr} \mathrm{R}: & -\mathrm{H} & -\mathrm{Me} \\ 1 & 58 \end{array}$	$\begin{array}{r} -E t \\ 59 \end{array}$	$\sim_{60}^{M e}$	$-\mathrm{CHF}_{2}$ 62	$\mathrm{NOH}_{63}^{\mathrm{OH}}$	$\widehat{64}_{\mathrm{CONH}_{2}}$	$\sim_{65}^{\mathrm{NH}_{2}}$
Compound	S. a.	MRSA 1	MRSA 2	E. c.	P. a. 1	P. a. 2
1	1.56	12.5	12.5	0.2	1.56	12.5
58	0.78	6.25	6.25	0.2	0.78	3.13
59	1.56	6.25	6.25	0.1	1.56	3.13
60	0.78	6.25	6.25	0.2	1.56	6.25
61	0.78	6.25	6.25	0.2	1.56	6.25
62	1.56	12.5	12.5	0.2	3.13	12.5
63	1.56	12.5	12.5	0.2	1.56	3.13
64	1.56	12.5	12.5	0.39	1.56	6.25
65	1.56	6.25	6.25	0.39	0.78	3.13
CZOP	0.78	50	50	0.05	0.39	1.56
CFSL	0.78	25	25	0.05	3.13	6.25
VCM	1.56	0.78	1.56	>100	>100	>100

S. a., Staphylococcus aureus SMITH; MRSA 1, S. aureus SR3626; MRSA 2, S. aureus SR3637;
E.c., Escherichia coli NIHJ JC-2; P. a. 1, Pseudomonas aeruginosa SR24; P. a. 2, P. aeruginosa SR5393 CZOP, cefozopran; CFSL, cefoselis; VCM, vancomycin
for the 2-aminoethyl group of $\mathbf{6 5}$.
Table 2 shows the antibacterial activity of cephems bearing the 1-(aminoalkyl)-1 H -imidazo[4,5-b]pyridine derivative. The data show that anti-MRSA activity was further enhanced by elongation of the spacer carbon chain between the amino group and the imdazopyridine moiety of compound 65. Although the 2 -aminopropyl derivative 66 and the 2 -aminobutyl derivative 67 did not enhance antiMRSA activity compared with 2-aminoethyl derivative 65, the 3 -aminopropyl derivative 68 and 4 -aminobutyl derivative 69 displayed more potent antibacterial activity than 65 against MRSA. Regarding the activity against

Pseudomonas aeruginosa, 65 and 68 were more active than 69. Among compounds $65 \sim 69$, the 3 -aminopropyl derivative 68 showed the most potent activity against MRSA and Pseudomonas aeruginosa. Therefore, our attention was next focused on the preparation of cephalosporin derivatives bearing a variety of 1-(3-aminopropyl)-1 H-imidazo[4,5-b]pyridinium analogs. We explored the effects of the substituent of the 3-aminopropyl moiety of compound 68 .

Table 3 shows the activities of cephalosporin derivatives bearing a variety of 1-(3-aminopropyl)-1H-imidazo[4,5b]pyridinium analogs. Further improvement of antibacterial

Table 2. Antibacterial activity (MIC, $\mu \mathrm{g} / \mathrm{ml}$) of $\mathbf{6 5} \sim \mathbf{6 9}$.

abbreviations: see footnote in Table 1.
activity against MRSA and Pseudomonas aeruginosa was not observed by modification of compound 68. The introduction of a methyl group (70) or a hydroxyethyl group (74) on the primary amine and a methyl group (77, 78) or a cyclopropyl group (79) on a spacer carbon chain of 3-aminopropyl derivative $\mathbf{6 8}$ had no effect on anti-MRSA activity compared to that of compound 68. Compounds $\mathbf{8 2} \sim \mathbf{8 5}$ having a cyclic amino group or compound 76 having a guanidyl group instead of an amino group also showed the same activity as compound $\mathbf{6 8}$ against MRSA. However, introduction of dimethyl groups (71) or a larger substituent than the methyl group, such as an ethyl (72) or a cyclopropyl (73) group on the primary amine, and an electron-withdrawing group such as a trifluoromethyl (80) or a carbamoylmethyl group (81) on the spacer carbon chain diminished activities against MRSA. Regarding the antibacterial activity against Pseudomonas aeruginosa, the activities of all compounds were inferior to that of compound 68.

While optimizing the C-3 substituent, we investigated the substituent effect of the C-7 oxime moiety. Some examples are shown in Table 4. In analogs of compound 70, the ethoxyimino moiety was modified. The isopropyl analog 87 had the same activity as 70 against MRSA and Pseudomonas aeruginosa, but was much less active against Escherichia coli. Other compounds, methyl analog 86, fluoromethyl analog 88 and fluoroethyl analog 89 , were less active than 70 against MRSA and Pseudomonas
aeruginosa. The ethyl analog 70 showed well-balanced activity against Gram-positive bacteria including MRSA and Gram-negative bacteria including Pseudomonas aeruginosa.
Among the novel cephalosporin derivatives having a 1-(substituted)-1 H -imidazo[4,5-b]pyridinium group at C-3', 68 had the highest activity against MRSA and Pseudomonas aeruginosa. However, subsequent evaluation of 68 revealed that its mouse acute toxicity (i.v.) was relatively strong. The other analogs were also evaluated for mouse acute toxicity. And compounds 70 and 74 were selected based primarily on a favorable combination of antibacterial activity and mouse acute toxicity. Ultimately, on the basis of physicochemical property, we selected crystalline 70 sulfate, not amorphous 74, as a promising candidate for further evaluation and designated as $\mathbf{S - 3 5 7 8}$.

Experimental

IR spectra were taken on a JASCO IR-700 spectrometer. ${ }^{1} \mathrm{H}$-NMR spectra were recorded on a Varian Gemini-300 $(300 \mathrm{MHz})$ or Varian Gemini-200 (200 MHz) spectrometer. Chemical shifts are reported in ppm from 2,2-dimethyl-2-silapentane-5-sulfonate (DSS in $\mathrm{D}_{2} \mathrm{O}$) or TMS (in CDCl_{3} and DMSO- d_{6}) as internal standard. The following abbreviations are used: s singlet, d doublet, dd double doublet, t triplet, q quartet, m multiplet, ABq AB quartet,

Table 3. Antibacterial activity (MIC, $\mu \mathrm{g} / \mathrm{ml}$) of $\mathbf{6 8}, \mathbf{7 0} \sim \mathbf{8 5}$.

Compound	$S . a$.	MRSA 1	MRSA 2	E. c.	$P . a .1$	$P . a .2$
$\mathbf{6 8}$	0.78	3.13	3.13	0.39	0.78	3.13
$\mathbf{7 0}$	0.78	3.13	3.13	0.39	1.56	6.25
$\mathbf{7 1}$	0.78	6.25	6.25	0.39	3.13	6.25
$\mathbf{7 2}$	1.56	3.13	6.25	0.39	1.56	6.25
$\mathbf{7 3}$	0.78	6.25	6.25	0.2	3.13	12.5
$\mathbf{7 4}$	1.56	3.13	3.13	0.39	1.56	6.25
$\mathbf{7 5}$	1.56	6.25	6.25	0.39	1.56	6.25
$\mathbf{7 6}$	0.78	3.13	3.13	0.2	1.56	6.25
$\mathbf{7 7}$	0.78	3.13	3.13	0.39	1.56	6.25
$\mathbf{7 8}$	0.78	3.13	3.13	0.39	1.56	6.25
$\mathbf{7 9}$	0.78	3.13	3.13	0.2	1.56	6.25
$\mathbf{8 0}$	1.56	12.5	12.5	0.39	6.25	12.5
$\mathbf{8 1}$	1.56	12.5	12.5	0.2	3.13	6.25
$\mathbf{8 2}$	1.56	3.13	3.13	0.39	1.56	6.25
$\mathbf{8 3}$	0.78	3.13	3.13	0.2	1.56	6.25
$\mathbf{8 4}$	0.78	3.13	3.13	0.2	1.56	6.25
$\mathbf{8 5}$	0.78	3.13	3.13	0.2	1.56	6.25

abbreviations: see footnote in Table 1.

Table 4. Antibacterial activity (MIC, $\mu \mathrm{g} / \mathrm{ml}$) of 70, 86 $\sim \mathbf{8 9}$.

Compound	S. a.	MRSA 1	MRSA 2	E. c.	$P . a .1$	$P . a .2$
$\mathbf{7 0}$	0.78	3.13	3.13	0.39	1.56	6.25
$\mathbf{8 6}$	1.56	6.25	6.25	0.39	3.13	12.5
$\mathbf{8 7}$	0.78	3.13	3.13	1.56	1.56	6.25
$\mathbf{8 8}$	0.78	6.25	6.25	0.2	3.13	6.25
$\mathbf{8 9}$	1.56	3.13	6.25	0.2	3.13	12.5

abbreviations: see footnote in Table 1.
bs broad singlet. Column chromatography was carried out on Merck Kieselgel and Mitsubushi Chemical HP-20.

Measurement of In Vitro Antibacterial Activity

MICs were determined by a serial twofold dilution method in Sensitivity Disk Agar-N (Nissui Pharmaceutical, Tokyo, Japan). The overnight cultures of bacterial strains in Mueller Hinton broth (Becton Dickinson) were diluted to about $10^{6} \mathrm{CFU} / \mathrm{ml}$. Bacterial suspensions of $1 \mu \mathrm{l}$ were spotted onto agar plates containing various concentrations of an antibiotic and incubated for 20 hours at $37^{\circ} \mathrm{C}$ before the MICs were scored.

General Preparation 1-(Substituted)-1 H -imidazo[4,5-b]pyridine

$$
\text { 1-tert-Butoxycarbonyl-1 } \mathrm{H} \text {-imidazo[4,5-b]pyridine (3) }
$$

To a solution of 1 H -imidazo[4,5-b]pyridine (2) (775 mg , 6.5 mmol) in DMF (8 ml) was added di-tert-butyl dicarbonate ($1.65 \mathrm{ml}, 7.15 \mathrm{mmol}$) under cooling on an icewater bath, and the mixture was allowed to stand overnight at room temperature. After evaporation of the solvent, the residue was purified by silica gel column chromatography to give the title compound $3\left(1.16 \mathrm{~g}, 81 \%\right.$ yield); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 1.71(9 \mathrm{H}, \mathrm{s}), 7.32(1 \mathrm{H}, \mathrm{dd}, J=4.8,8.1 \mathrm{~Hz}), 8.28$ $(1 \mathrm{H}, \mathrm{dd}, J=1.8,8.1 \mathrm{~Hz}), 8.62(1 \mathrm{H}, \mathrm{dd}, J=1.8,4.8 \mathrm{~Hz}), 8.66$ ($1 \mathrm{H}, \mathrm{s}$).

1-[3-(tert-Butoxycarbonyl-methylamino)-propyl]-1H-imidazo[4,5-b]pyridine (12)
(Method A) To a solution of 1 H -imidazo[4,5-b]pyridine (2) $(5.15 \mathrm{~g}, 34.8 \mathrm{mmol})$ in DMF (35 ml) was added 60% NaH ($1.53 \mathrm{~g}, 38.2 \mathrm{mmol}$) under cooling on an ice-water bath, and the mixture was stirred at room temperature for 15 minutes. To the mixture was added a solution of 3 -tert-butoxycarbonyl-methylaminopropyl methanesulfonate (12') $(10.2 \mathrm{~g}, 38.2 \mathrm{mmol})$ in DMF (20 ml). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 1.5 hours. After evaporation of the solvent, the residue was chromatographed on silica gel column. The fraction eluted with EtOAc was concentrated to give a regioisomer, 3-[3-(tert-butoxycarbonyl-methyl-amino)-propyl]-3H-imidazo[4,5-b]pyridine $\quad(5.94 \mathrm{~g}, \quad 59 \%$ yield); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.44(9 \mathrm{H}, \mathrm{s}), 2.18(2 \mathrm{H}, \mathrm{m}), 2.85$ $(3 \mathrm{H}, \mathrm{s}), 3.30(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 4.32(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$, $7.25(1 \mathrm{H}, \mathrm{dd}, J=8.1,4.8 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.4 \mathrm{~Hz})$, $8.15(1 \mathrm{H}, \mathrm{s}), 8.40(1 \mathrm{H}, \mathrm{dd}, J=4.8,1.4 \mathrm{~Hz})$.

The fraction eluted with $\mathrm{MeOH}: \mathrm{EtOAc}=6: 94$ was concentrated to give the objective compound $12(2.90 \mathrm{~g}$, 29% yield); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.45(9 \mathrm{H}, \mathrm{s}), 2.12(2 \mathrm{H}, \mathrm{m})$, $2.85(3 \mathrm{H}, \mathrm{s}), 3.32(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 4.22(2 \mathrm{H}, \mathrm{t}$, $J=7.0 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{dd}, J=8.2,4.8 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{dd}$, $J=8.2,1.4 \mathrm{~Hz}), 8.20(1 \mathrm{H}, \mathrm{s}), 8.60(1 \mathrm{H}, \mathrm{dd}, J=4.8,1.4 \mathrm{~Hz})$.
(Method B) To a suspension of N-(3-amino-2-pyridinyl)formamide (18) $(5.76 \mathrm{~g}, 42 \mathrm{mmol})$ and 3 -tert-
butoxycarbonyl-methylaminopropionaldehyde (20) $(8.22 \mathrm{~g}$, $42 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ was added an ice-cooled mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and $\mathrm{AcOH}(60 \mathrm{ml})$ at $-10^{\circ} \mathrm{C}$. To this borane-pyridine complex ($4.44 \mathrm{ml}, 46.2 \mathrm{mmol}$) was added immediately. After stirring for 1 hour at room temperature, the reaction mixture was neutralized to pH 7 using aqueous ammoium hydroxide and extracted with EtOAc. The organic layer was separated, dried over MgSO_{4}, and filtered. After concentration, the crude residue was chromatographed on silica gel column ($\mathrm{MeOH}: \mathrm{EtOAc}=1: 9)$ to give compound 12 ($1.25 \mathrm{~g}, 92 \%$ yield) which had properties identical to the product reported from Method A.
(Method C) To a solution of 2,3-diaminopyridine (35) ($220 \mathrm{mg}, \quad 2 \mathrm{mmol}$) and 3-tert-butoxycarbonylmethylaminopropionaldehyde (20) ($450 \mathrm{mg}, 2.4 \mathrm{mmol}$) in $\mathrm{MeOH}(2.0 \mathrm{ml})$ and $\mathrm{AcOH}(2.0 \mathrm{ml})$ was added $10 \% \mathrm{Pd}-\mathrm{C}$ $(128 \mathrm{mg})$. The mixture was stirred under hydrogen atmosphere for 20 minutes under ambient pressure and at room temperature. The catalyst was filtered off and to the solution was added EtOAc (20 ml) and $1 \mathrm{~N} \mathrm{NaOH}(5 \mathrm{ml})$. The aqueous layer was extracted with EtOAc (15 ml). The combined organic layer was washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by silica-gel column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=80: 1 \sim 10: 1\right)$ to give 39 as a solid $(560 \mathrm{mg}, 84 \%) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.44(9 \mathrm{H}$, s), $1.83(2 \mathrm{H}, \mathrm{m}), 2.85(3 \mathrm{H}, \mathrm{s}), 3.1(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 3.36$ $(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 4.0(1 \mathrm{H}, \mathrm{bs}), 4.5(2 \mathrm{H}, \mathrm{bs}), 6.65(1 \mathrm{H}, \mathrm{bs})$, $6.76(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{bs})$.

To a mixture of compound $39(7.89 \mathrm{~g}, 28 \mathrm{mmol})$ and triethyl orthoformate $(46.6 \mathrm{ml})$ was added p-toluenesulfonic acid monohydrate ($53 \mathrm{mg}, 0.28 \mathrm{mmol}$) and stirred at $90^{\circ} \mathrm{C}$ for 40 minutes. The reaction mixture was concentrated in vacuo and to the residue was added EtOAc and saturated NaHCO_{3}. The organic layer was washed with saturated NaHCO_{3} and brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by silicagel column chromatography to give compound 12 (7.17 g , 88% from 38) with properties identical to the product reported above.

The other 1-(substituted)-imidazo[4,5-b]pyridines (4~11, 13~17, 28~34, 43~45) were prepared by procedures (Method $\mathrm{A} \sim \mathrm{C}$) similar to those described for the preparation of $\mathbf{1 2}$.

1-Methyl-1 H -imidao[4,5-b]pyridine (4)

(Method A) Compound 4 was obtained in 70% yield from 2 using iodide 4^{\prime} and NaH as a base; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 3.87(3 \mathrm{H}, \mathrm{s}), 7.23(1 \mathrm{H}, \mathrm{dd}, J=5.1,8.1 \mathrm{~Hz}), 7.68$
$(1 \mathrm{H}, \mathrm{dd}, J=1.5,8.1 \mathrm{~Hz}), 8.11(1 \mathrm{H}, \mathrm{s}), 8.50(1 \mathrm{H}, \mathrm{dd}, J=1.5$, 5.1 Hz).

1-Ethyl-1 H-imidao[4,5-b]pyridine (5)

(Method A) Compound 5 was obtained in 72% yield from 2 using iodide 5^{\prime} and NaH as a base; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 1.57(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 4.27(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz})$, $7.25(1 \mathrm{H}, \mathrm{dd}, J=5.1,8.1 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{dd}, J=1.5,8.1 \mathrm{~Hz})$, $8.16(1 \mathrm{H}, \mathrm{s}), 8.58(1 \mathrm{H}, \mathrm{dd}, J=1.5,5.1 \mathrm{~Hz})$.

1-(3-Chloropropyl)-1 H -imidazo[4,5-b]pyridine (6)

(Method A) Compound 6 was obtained in 21% yield from 2 using iodide 6^{\prime} and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as a base (reaction temperature; $\left.5^{\circ} \mathrm{C}\right):{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.33(2 \mathrm{H}, \mathrm{m}), 3.49$ $(2 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}), 4.44(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{dd}$, $J=4.8,8.1 \mathrm{~Hz}), 7.80(1 \mathrm{H}, \mathrm{dd}, J=1.5,7.8 \mathrm{~Hz}), 8.17(1 \mathrm{H}, \mathrm{s})$, $8.60(1 \mathrm{H}, \mathrm{dd}, J=1.5,4.5 \mathrm{~Hz})$.

1-Difluoromethyl-1 H -imidazo[4,5-b]pyridine (7)
(Method A) Compound 7 was obtained in 48% yield from 2 using chloride 7^{\prime} and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as a base; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.39(1 \mathrm{H}, \mathrm{dd}, J=4.8,8.1 \mathrm{~Hz}), 7.41$ $(1 \mathrm{H}, \mathrm{d}, J=60.3 \mathrm{~Hz}), 8.04(1 \mathrm{H}, \mathrm{dd}, J=0.9,8.1 \mathrm{~Hz}), 8.46(1 \mathrm{H}$, s), $8.64(1 \mathrm{H}, \mathrm{dd}, J=1.5,4.5 \mathrm{~Hz})$.

1-(2-Triethylsilanyloxy-ethyl)-1 H -imidazo[4,5-b]pyridine (8)
(Method A) Compound 8 was obtained in 30% yield from 2 using iodide 8^{\prime} and NaH as a base; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 0.46(6 \mathrm{H}, \mathrm{q}, J=8.2 \mathrm{~Hz}), 0.81(9 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz})$, $3.94(2 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}), 4.30(2 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}), 7.22(1 \mathrm{H}$, dd, $J=7.8,1.6 \mathrm{~Hz}), 7.77(1 \mathrm{H}, \mathrm{dd}, J=1.2,7.8 \mathrm{~Hz}), 8.17(1 \mathrm{H}$, s), $8.56(1 \mathrm{H}, \mathrm{dd}, J=1.6,4.6 \mathrm{~Hz})$.

$$
\text { 1-Ethoxycarbonylmethy- } 1 \mathrm{H} \text {-imidazo[4,5-b]pyridine (9) }
$$

(Method A) Compound 9 was obtained in 53% yield from 2 using iodide 9^{\prime} and NaH as a base; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 1.29(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 4.27(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz})$, $5.10(2 \mathrm{H}, \mathrm{s}), 7.28(1 \mathrm{H}, \mathrm{dd}, J=8.0,4.8 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{dd}$, $J=8.0,1.4 \mathrm{~Hz}), 8.49(1 \mathrm{H}, \mathrm{dd}, J=4.8,1.4 \mathrm{~Hz}), 8.51(1 \mathrm{H}, \mathrm{s})$.

1-(2-tert-Butoxycarbonylamino-ethyl)-1 H -imidazo[4,5b]pyridine (10)
(Method A) Compound 10 was obtained in 36% yield from 2 using methanesulfonate $\mathbf{1 0}^{\prime}$ and NaH as a base; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.45(9 \mathrm{H}, \mathrm{s}), 3.57(2 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz}), 4.36$ $(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 5.51(1 \mathrm{H}, \mathrm{s}), 7.17(1 \mathrm{H}, \mathrm{dd}, J=8.2$, $4.8 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}), 8.01(1 \mathrm{H}, \mathrm{s}), 8.47$ ($1 \mathrm{H}, \mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}$).

1-(3-tert-Butoxycarbonylamino-propyl)-1 H -imidazo[4,5b]pyridine (11)
(Method A) Compound 11 was obtained in 27% yield from 2 using methanesulfonate $\mathbf{1 1}^{\prime}$ and NaH as a base; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.45(9 \mathrm{H}, \mathrm{s}), 2.11(2 \mathrm{H}, \mathrm{m}), 3.20(2 \mathrm{H}, \mathrm{m})$, $4.27(2 \mathrm{H}, \mathrm{t}, J=10.5 \mathrm{~Hz}), 4.79(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.25(1 \mathrm{H}, \mathrm{dd}$, $J=11.7,7.2 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{dd}, J=11.7,1.5 \mathrm{~Hz}), 8.21(1 \mathrm{H}$, s), $8.59(1 \mathrm{H}, \mathrm{dd}, J=7.2,1.5 \mathrm{~Hz})$.
(Method B) Compound 11, which had properties identical to the product reported from Method A, was obtained in 80% yield from 18 using aldehyde 19.

1-(4-tert-Butoxycarbonylamino-butyl)-1 H -imidazo[4,5b]pyridine (13)
(Method A) Compound 13 was obtained in 22% yield from 2 using methanesulfonate $\mathbf{1 3}^{\prime}$ and NaH as a base; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.44(9 \mathrm{H}, \mathrm{s}), 1.52(2 \mathrm{H}, \mathrm{m}), 1.93(2 \mathrm{H}, \mathrm{m})$, $3.18(2 \mathrm{H}, \mathrm{m}), 4.25(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 4.65(1 \mathrm{H}, \mathrm{s}), 7.23$ $(1 \mathrm{H}, \mathrm{dd}, J=8.1,4.8 \mathrm{~Hz}), 7.77(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}), 8.12$ $(1 \mathrm{H}, \mathrm{s}), 8.58(1 \mathrm{H}, \mathrm{dd}, J=4.8,1.2 \mathrm{~Hz})$.

1-(1-tert-Butoxycarbonyl-azetidin-3-ylmethyl)-1 H -imidazo[4,5-b]pyridine (14)
(Method A) Compound 14 was obtained in 22% yield from 2 using methanesulfonate 14^{\prime} and NaH as a base; ${ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.44(9 \mathrm{H}, \mathrm{s}), 3.08(1 \mathrm{H}, \mathrm{m}), 3.70(2 \mathrm{H}, \mathrm{m})$, $4.06(2 \mathrm{H}, \mathrm{m}), 4.43(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{dd}, J=4.6$, $7.8 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.8 \mathrm{~Hz}), 8.14(1 \mathrm{H}, \mathrm{s}), 8.61$ $(1 \mathrm{H}, \mathrm{dd}, J=1.6,4.6 \mathrm{~Hz})$.

1-[(3R)-1-tert-Butoxycarbonyl-pyrrolidin-3-yl]-1 H -imidazo[4,5-b]pyridine (15)
(Method A) Compound 15 was obtained in 13% yield from 2 using methanesulfonate $\mathbf{1 5}^{\prime}$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as a base; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 1.39 \sim 1.43(9 \mathrm{H}, \mathrm{m}), 2.43 \sim 2.47$ $(2 \mathrm{H}, \mathrm{m}), 3.52 \sim 3.60(2 \mathrm{H}, \mathrm{m}), 3.83 \sim 3.89(1 \mathrm{H}, \mathrm{m}), 5.20(1 \mathrm{H}$, br s), $7.30(1 \mathrm{H}, \mathrm{dd}, J=4.8,8.1 \mathrm{~Hz}), 8.14(1 \mathrm{H}, \mathrm{dd}, J=1.5$, $8.1 \mathrm{~Hz}), 8.44(1 \mathrm{H}, \mathrm{dd}, J=1.5,4.8 \mathrm{~Hz}), 8.55(1 \mathrm{H}, \mathrm{br} \mathrm{s})$.

1-[(3S)-1-tert-Butoxycarbonyl-pyrrolidin-3-yl]-1 H -imidazo[4,5-b]pyridine (16)
(Method A) Compound 16 was obtained in 16% yield from 2 using methanesulfonate $\mathbf{1 6}^{\prime}$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as a base.

1-(1-tert-Butoxycarbonyl-piperidin-4-yl)-1 H -imidazo-[4,5-b]pyridine (17)
(Method A) Compound 17 was obtained in 20% yield from 2 using methanesulfonate $\mathbf{1 7}^{\prime}$ and sodiumhydride as a base; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.51(9 \mathrm{H}, \mathrm{s}), 2.14(4 \mathrm{H}, \mathrm{m}), 2.94$ $(1 \mathrm{H}, \mathrm{m}), 4.37(4 \mathrm{H}, \mathrm{m}), 7.25(1 \mathrm{H}, \mathrm{dd}, J=8.2,4.6 \mathrm{~Hz}), 7.79$
($1 \mathrm{H}, \mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}), 8.21(1 \mathrm{H}, \mathrm{s}), 8.60(1 \mathrm{H}, \mathrm{dd}, J=4.6$, 1.4 Hz).

1-Propyl-1H-imidazo[4,5-b]pyridine (28)

(Method B) Compound 28 was obtained from 18 in 41% yield using aldehyde $21 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.97(3 \mathrm{H}, \mathrm{t}$, $J=7 \mathrm{~Hz}), 1.93(2 \mathrm{H}, \mathrm{m}), 4.16(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{dd}$, $J=8.2,4.2 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 8.12(1 \mathrm{H}, \mathrm{s}), 8.59$ $(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz})$.

1-Cyclopropylmethyl-1 H -imidazo[4,5-b]pyridine (29)

(Method B) Compound 29 was obtained from 18 in 71% yield using aldehyde $22 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.43 \sim 0.56$ $(4 \mathrm{H}, \mathrm{m}), 1.3(1 \mathrm{H}, \mathrm{m}), 2.12(2 \mathrm{H}, \mathrm{m}), 4.15(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz})$, $7.20(1 \mathrm{H}, \mathrm{dd}, J=8.2,4.8 \mathrm{~Hz}), 8.14(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 8.4$ $(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 8.54(1 \mathrm{H}, \mathrm{s})$.

1-[3-(tert-Butoxycarbonyl-ethylamino)-propyl]-1 H-imidazo[4,5-b]pyridine (30)
(Method B) Compound $\mathbf{3 0}$ was obtained from $\mathbf{1 8}$ in 81% yield using aldehyde $23 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.08(3 \mathrm{H}, \mathrm{t}$, $J=6.9 \mathrm{~Hz}), 1.44(9 \mathrm{H}, \mathrm{s}), 2.12(2 \mathrm{H}, \mathrm{m}), 3.25(4 \mathrm{H}, \mathrm{m}), 4.22$ $(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{dd}, J=8.4,4.5 \mathrm{~Hz}), 7.74(1 \mathrm{H}$, dd, $J=8.4,1.5 \mathrm{~Hz}), 8.20(1 \mathrm{H}, \mathrm{s}), 8.59(1 \mathrm{H}, \mathrm{dd}, J=4.5$, 1.5 Hz).

1-[(3R)-3-tert-Butoxycarbonylamino-butyl]-1 H -imidazo-[4,5-b]pyridine (31)
(Method B) Compound 31 was obtained from 18 in 85% yield using aldehyde $24 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.19(3 \mathrm{H}, \mathrm{d}$, $J=6.9 \mathrm{~Hz}), 1.46(9 \mathrm{H}, \mathrm{s}), 2.01(2 \mathrm{H}, \mathrm{m}), 3.80(1 \mathrm{H}, \mathrm{bs}), 4.27$ $(2 \mathrm{H}, \mathrm{m}), 4.48(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, J=4.5$, $8.4 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{dd}, J=1.5,8.1 \mathrm{~Hz}), 8.23(1 \mathrm{H}, \mathrm{bs}), 8.58$ $(1 \mathrm{H}, \mathrm{dd}, J=1.5,4.8 \mathrm{~Hz})$.

1-[(3S)-3-tert-Butoxycarbonylamino-butyl]-1 H -imidazo-[4,5-b]pyridine (32)
(Method B) Compound $\mathbf{3 2}$ was obtained from 18 in 79% yield using aldehyde 25.

1-[2-(1-tert-Butoxycarbonylamino-cyclopropyl)-ethyl]1 H -imidazo[4,5-b]pyridine (33)
(Method B) Compound 33 was obtained from 18 in 15% yield using aldehyde 26; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.48(2 \mathrm{H}, \mathrm{t}$, $J=5.7 \mathrm{~Hz}), 0.76(2 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}), 1.43(9 \mathrm{H}, \mathrm{s}), 2.11(2 \mathrm{H}$, $\mathrm{t}, J=7.5 \mathrm{~Hz}), 4.40(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{bs}), 7.23$ $(1 \mathrm{H}, \mathrm{dd}, J=4.8,8.1 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{dd}, J=1.5,7.8 \mathrm{~Hz}), 8.27$ $(1 \mathrm{H}, \mathrm{s}), 8.57(1 \mathrm{H}, \mathrm{dd}, J=1.5,4.8 \mathrm{~Hz})$.

1-(3-tert-Butoxycarbonylamino-4,4,4-trifluoro-butyl)1 H -imidazo[4,5-b]pyridine (34)
(Method B) Compound 34 was obtained from 18 in 58% yield using aldehyde $27 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.48(9 \mathrm{H}, \mathrm{s})$, $2.07 \sim 2.47(2 \mathrm{H}, \mathrm{m}), 4.37(3 \mathrm{H}, \mathrm{bs}), 5.34(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz})$, $7.27(1 \mathrm{H}, \mathrm{dd}, J=8.2,4.8 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.6 \mathrm{~Hz})$, $8.26(1 \mathrm{H}, \mathrm{s}), 8.60(1 \mathrm{H}, \mathrm{dd}, J=4.8,1.4 \mathrm{~Hz})$.

1-[(2S)-2-tert-Butoxycarbonylamino-propyl]-1 H -imidazo[4,5-b]pyridine (43)
(Method C) Compound 43 was obtained from 2,3diaminopyridine (35) in 51% yield using aldehyde $\mathbf{3 6}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.18(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.43(9 \mathrm{H}, \mathrm{s}), 4.05$ $(1 \mathrm{H}, \mathrm{m}), 4.29(2 \mathrm{H}, \mathrm{m}), 4.64(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 7.24(1 \mathrm{H}$, dd, $J=4.8,8.1 \mathrm{~Hz}), 7.87(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{s})$, $8.56(1 \mathrm{H}, \mathrm{dd}, J=1.8,5.1 \mathrm{~Hz})$.

1-[(2S)-2-tert-Butoxycarbonylamino-butyl]-1 H -imidazo-[4,5-b]pyridine (44)
(Method C) Compound 44 was obtained from diaminopyridine 35 in 46% yield using aldehyde $37 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.42(9 \mathrm{H}, \mathrm{s})$, $1.4 \sim 1.7(2 \mathrm{H}, \mathrm{m}), 3.83(1 \mathrm{H}, \mathrm{m}), 4.32(2 \mathrm{H}, \mathrm{m}), 4.71(1 \mathrm{H}, \mathrm{d}$, $J=8.1 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, J=4.5,8.1 \mathrm{~Hz}), 7.86(1 \mathrm{H}, \mathrm{d}$, $J=7.8 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{s}), 8.55(1 \mathrm{H}, \mathrm{dd}, J=1.5,5.1 \mathrm{~Hz})$.

1-[(3S)-3-tert-Butoxycarbonylamino-3-carboxy-propyl]1 H -imidazo[4,5-b]pyridine (45)
(Method C) Compound 45 was obtained from diaminopyridine 35 using aldehyde 38 in 68% yield; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 1.41(9 \mathrm{H}, \mathrm{s}), 2.0 \sim 2.40(2 \mathrm{H}, \mathrm{m}), 3.80$ $(1 \mathrm{H}, \mathrm{m}), 4.34(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{dd}, J=4.5$, $7.8 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz})$, $8.41(1 \mathrm{H}, \mathrm{s}), 8.42(1 \mathrm{H} . \mathrm{d}, J=6.9 \mathrm{~Hz})$.

1-Carbamoylmethyl-1 H -imidazo[4,5-b]pyridine (46)

To a solution of compound 9 in EtOH (20 ml) was added $28 \% \mathrm{NH}_{4} \mathrm{OH}$ and the reaction mixture was stirred at room temperature for 30 minutes. After evaporation of the solvent, the residue was purified by HP-20 resin chromatography to afford compound $46(1.41 \mathrm{~g}, 48 \%) ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 4.96(2 \mathrm{H}, \mathrm{s}), 7.27(1 \mathrm{H}, \mathrm{dd}, J=8.2$, $4.8 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{s}), 7.76(1 \mathrm{H}, \mathrm{s}), 7.92(1 \mathrm{H}, \mathrm{dd}, J=8.2$, $1.6 \mathrm{~Hz}), 8.40(1 \mathrm{H}, \mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}), 8.41(1 \mathrm{H}, \mathrm{s})$.

1-(3-Methylamino-propyl)-1 H -imidazo[4,5-b]pyridine (47)

Compound 12 ($2.90 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in 3.3 N $\mathrm{HCl} / \mathrm{MeOH}$, and stirred at room temperature overnight. After evaporation of the solvent, the residue was dissolved
in $\mathrm{H}_{2} \mathrm{O}$ then $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added to make the solution alkaline. The mixture was concentrated under reduced pressure and the residue was rinsed with CHCl_{3}, and precipitate was filtered off. The filtrate was condensed under reduced pressure to afford compound $47(1.43 \mathrm{~g}$, $100 \%) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.02(2 \mathrm{H}, \mathrm{m}), 2.4(3 \mathrm{H}, \mathrm{s}), 2.56$ $(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 4.33(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}$, $J=4.8,8.1 \mathrm{~Hz}), 7.79(1 \mathrm{H}, \mathrm{dd}, J=1.5,7.8 \mathrm{~Hz}), 8.15(1 \mathrm{H}, \mathrm{s})$, $8.57(1 \mathrm{H}, \mathrm{dd}, J=1.5,4.5 \mathrm{~Hz})$.

1-(3-Dimethylamino-propyl)-1 H -imidazo[4,5-b]pyridine (48)

To compound 47 was added $\mathrm{HCO}_{2} \mathrm{H}(1.43 \mathrm{ml})$ and 35% HCHO (0.97 ml) and this was heated at $100^{\circ} \mathrm{C}$ for 30 minutes. After evaporation of solvent, the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ then $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added until the solution became alkaline. The mixture was concentrated under reduced pressure, the residue was rinsed with CHCl_{3}, and then the precipitate was filtered off. The filtrate was condensed under reduced pressure to afford compound 48 ($1.57 \mathrm{~g}, 100 \%$); ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 2.03(2 \mathrm{H}, \mathrm{m}), 2.25(6 \mathrm{H}, \mathrm{s}), 2.27$ $(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 4.30(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}$, $J=4.8,8.1 \mathrm{~Hz}), 7.79(1 \mathrm{H}, \mathrm{dd}, J=1.2,8.4 \mathrm{~Hz}), 8.15(1 \mathrm{H}, \mathrm{s})$, $8.57(1 \mathrm{H}, \mathrm{dd}, J=1.5,4.8 \mathrm{~Hz})$.

1-[3-(tert-Butoxycarbonyl-cyclopropyl-amino)-propyl]1 H -imidazo[4,5-b]pyridine (49)

To compound $6(660 \mathrm{mg}, 3.25 \mathrm{mmol})$ was added cyclopropyl amine $(2.4 \mathrm{ml})$ and this was stirred at room temperature for 2 hours. To the reaction mixture was added cyclopropylamine (1.2 ml) and the reaction mixture was stirred overnight at room temperature then refluxed for 3 hours. After evaporation, the residue was dissolved in DMF $(6 \mathrm{ml})$ then $\mathrm{Boc}_{2} \mathrm{O}(0.85 \mathrm{ml})$ was added to the solution. After stirring the reaction at room temperature for 2 hours, 4-dimetylaminopyridine (82 mg) was added and stirring was continued overnight. After evaporation, the residue was chromatographed on a silica gel column to give compound 49 ($566 \mathrm{mg}, 49 \%$ from 6); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.55(2 \mathrm{H}$, m), $0.74(2 \mathrm{H}, \mathrm{m}), 1.44(9 \mathrm{H}, \mathrm{s}), 2.15(2 \mathrm{H}, \mathrm{m}), 2.47(1 \mathrm{H}, \mathrm{m})$, $3.30(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 4.22(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 7.25(1 \mathrm{H}$, $\mathrm{dd}, J=5.01,8.1 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{dd}, J=1.8,7.8 \mathrm{~Hz}), 8.21$ $(1 \mathrm{H}, \mathrm{s}), 8.59(1 \mathrm{H}, \mathrm{dd}, J=1.8,4.5 \mathrm{~Hz})$.

1-[3-[tert-Butoxycarbonyl-(2-triethylsilanyloxy-ethyl)-amino]-propyl]-1 H -imidazo[4,5-b]pyridine (50)

To a solution of compound $11(1.14 \mathrm{~g}, 4.13 \mathrm{mmol})$ in DMF (6 ml) was added $60 \% \mathrm{NaH}(250 \mathrm{mg}, 6.2 \mathrm{mmol})$ and the mixture was stirred at room temperature for 10 minutes. To the reaction mixture was added a solution of (2-bromo-
ethoxy)-triethylsilane $(1.48 \mathrm{~g}, 6.2 \mathrm{mmol})$ in DMF and stirred at the same temperature for 1 hour. To the reaction mixture was added $60 \% \mathrm{NaH}(170 \mathrm{mg}, 4.13 \mathrm{mmol})$ and (2-bromo-ethoxy)-triethylsilane ($990 \mathrm{mg}, 4.13 \mathrm{mmol}$). This was stirred at room temperature for 2 hours, then poured into a mixture of cold water and EtOAc. The organic layer was washed successively with water and brine, dried over MgSO_{4} and filtered off. After evaporation, the residue was chromatographed on a silica gel column to give compound $50(1.26 \mathrm{~g}, 70 \%) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.57(9 \mathrm{H}, \mathrm{q}$, $J=7.8 \mathrm{~Hz}), 0.93(6 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 1.46(9 \mathrm{H}, \mathrm{s}), 2.15(2 \mathrm{H}$, m), $3.25(2 \mathrm{H}, \mathrm{bs}), 3.38(2 \mathrm{H}, \mathrm{bs}), 3.68(2 \mathrm{H}, \mathrm{m}), 4.21(2 \mathrm{H}, \mathrm{t}$, $J=7.2 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{dd}, J=7.8,4.5 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{dd}$, $J=7.8,1.2 \mathrm{~Hz}), 8.30(1 \mathrm{H}, \mathrm{s}), 8.59(1 \mathrm{H}, \mathrm{dd}, J=4.5,1.2 \mathrm{~Hz})$.

1-[3-[tert-Butoxycarbonyl-(2-hydroxy-ethyl)-amino]-propyl]-1 H -imidazo[4,5-b]pyridine (51)

To a solution of compound $\mathbf{5 0}(1.26 \mathrm{~g}, 2.9 \mathrm{mmol})$ of THF $(6 \mathrm{ml})$ was added $\mathrm{AcOH}(3 \mathrm{ml})$ and water $(6 \mathrm{ml})$ then this was stirred at room temperature for 30 minutes. The reaction mixture was poured into a mixture of ice water and EtOAc. The aqueous layer was adjusted to pH 8 with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with EtOAc. The organic layer was dried over MgSO_{4}, filtered and concentrated under reduced pressure to give compound 51 ($0.93 \mathrm{~g}, 100 \%$); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 1.42(9 \mathrm{H}, \mathrm{s}), 2.18(2 \mathrm{H}, \mathrm{m}), 3.38(4 \mathrm{H}, \mathrm{m}), 3.78$ $(2 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}), 4.23(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{dd}$, $J=8.1,3.9 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}), 8.17(1 \mathrm{H}, \mathrm{s})$, 8.55 ($1 \mathrm{H}, \mathrm{dd}, J=3.9,1.2 \mathrm{~Hz}$).

1-[3-[tert-Butoxycarbonyl-(2-di-tert-butoxycarbonyl-amino-ethyl)-amino]-propyl]-1 H-imidazo[4,5-b]pyridine (52)

To a solution of compound $51(0.97 \mathrm{~g}, 3.02 \mathrm{mmol})$ of THF (15 ml) was added tri- n-butylphosphine $(1.13 \mathrm{ml}$, 4.53 mmol), di-tert-butyl iminodicarboxylate $(0.995 \mathrm{~g}$, 4.53 mmol) and $1,1^{\prime}$-(azodicarbonyl)dipiperidine $(1.15 \mathrm{~g}$, 4.53 mmol) under cooling on an ice-water bath, stirred for 15 minutes, and stirred at room temperature for 3 hours. Next, tri-n-butylphosphine ($0.37 \mathrm{ml}, 1.5 \mathrm{mmol}$), di-tertbutyl iminodicarboxylate $(0.33 \mathrm{~g}, 1.5 \mathrm{mmol})$ and $1,1^{\prime}-$ (azodicarbonyl)dipiperidine $(0.38 \mathrm{~g}, 1.5 \mathrm{mmol})$ were added to the reaction mixture and this was stirred for 2 hours. After filtration of insoluble material, EtOAc was added to the filtrate followed by washing with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4}, filtration and concentration under reduced pressure. The residue was chromatographed on a silica gel column to give compound 52 ($1.14 \mathrm{~g}, 72 \%$); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 1.48(27 \mathrm{H}, \mathrm{s}), 2.13(2 \mathrm{H}, \mathrm{m}), 3.37(4 \mathrm{H}, \mathrm{m}), 3.73$ $(2 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}), 4.21(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{dd}$,
$J=7.8,4.8 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}), 8.24(1 \mathrm{H}, \mathrm{s})$, $8.58(1 \mathrm{H}, \mathrm{dd}, J=4.8,1.2 \mathrm{~Hz})$.

1-(3-Amino-propyl)-1 H-imidazo[4,5-b]pyridine dihydrochloride (53)

To compound $11(2.76 \mathrm{~g}, 10 \mathrm{mmol})$ was added 3.3 N $\mathrm{HCl} / \mathrm{MeOH}(30 \mathrm{ml})$ and this was stirred at room temperature for 22 hours. After evaporation of the solvent, crystallization was performed with MeOH and 2-propanol to give compound 53 ($2.34 \mathrm{~g}, 94 \%$); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) δ $2.22(2 \mathrm{H}, \mathrm{m}), 2.84(2 \mathrm{H}, \mathrm{m}), 4.63(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 7.68$ $(1 \mathrm{H}, \mathrm{dd}, J=5.1,8.1 \mathrm{~Hz}), 8.32(2 \mathrm{H}, \mathrm{bs}), 8.69(1 \mathrm{H}, \mathrm{d}$, $J=5.7 \mathrm{~Hz}), 8.71(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 9.45(1 \mathrm{H}, \mathrm{s})$.

1-[3-N, N^{\prime}-Bis(tert-butoxycarbonyl)guanidino-propyl]$1 H$-imidazo[4,5-b]pyridine (55)

To a solution of compound $53(747 \mathrm{mg}, 13 \mathrm{mmol})$ in DMF (10 ml) was added $1 H$-pyrazole-1-[N, N^{\prime}-bis (tertbutoxycarbonyl)carboxamidine (54) ($978 \mathrm{mg}, 14.3 \mathrm{mmol}$) and this was stirred at room temperature overnight. After addition of EtOAc and water, the organic phase was washed with water and brine, dried over MgSO_{4}, and filtered off. After evaporation of solvent, the residue was rinsed with $\mathrm{Et}_{2} \mathrm{O}$ and the precipitate was collected by filtration to give compound 55 ($1.06 \mathrm{~g}, 84 \%$); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d ${ }_{6}$) $\delta 1.39$ $(9 \mathrm{H}, \mathrm{s}), 1.47(9 \mathrm{H}, \mathrm{s}), 2.08(2 \mathrm{H}, \mathrm{m}), 3.31(2 \mathrm{H}, \mathrm{m}), 4.31(2 \mathrm{H}$, $\mathrm{t}, J=6.6 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{dd}, J=4.8,8.1 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{dd}$, $J=1.2,8.4 \mathrm{~Hz}), 8.35(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 8.41(1 \mathrm{H}, \mathrm{dd}$, $J=1.5 \mathrm{~Hz}, 4.5 \mathrm{~Hz}), 8.58(1 \mathrm{H}, \mathrm{s})$.

1-[(3S)-3-tert-Butoxycarbonylamino-3-methoxy-carbonyl-propyl]-1 H-imidazo[4,5-b]pyridine (56)

To a solution of compound 45 in THF was added diazomethane $-\mathrm{Et}_{2} \mathrm{O}$ under cooling ice bath. After evaporation of the solvent, the residue was chromatographed on a silica gel column to give compound 56 ($4.5 \mathrm{~g}, 66 \%$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.46(9 \mathrm{H}, \mathrm{s})$, $2.20 \sim 2.52(2 \mathrm{H}, \mathrm{m}), 3.64(3 \mathrm{H}, \mathrm{s}), 4.34(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz})$, $4.2 \sim 4.39(1 \mathrm{H}, \mathrm{m}), 5.45(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{dd}$, $J=4.8,8.1 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{dd}, J=1.5,8.1 \mathrm{~Hz}), 8.22(1 \mathrm{H}, \mathrm{s})$, $8.59(1 \mathrm{H}, \mathrm{dd}, J=1.5,4.5 \mathrm{~Hz})$.

1-[(3S)-3-tert-Butoxycarbonylamino-3-carbamoyl-propyl]-1 H-imidazo[4,5-b]pyridine (57)

To a solution of compound $56(4.5 \mathrm{~g}, 13.5 \mathrm{mmol})$ was added $28 \% \quad \mathrm{NH}_{4} \mathrm{OH}(10 \mathrm{ml})$ with stirring at room temperature for 4 hours then the mixture was left standing at $4^{\circ} \mathrm{C}$ overnight. After evapotration of the solvent, crystallization was performed from the residue with EtOH to give compound $57(2.39 \mathrm{~g}, 55 \%)$: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\boldsymbol{\delta}$
$1.40(9 \mathrm{H}, \mathrm{s}), 1.96 \sim 2.20(2 \mathrm{H}, \mathrm{m}), 3.80(1 \mathrm{H}, \mathrm{m}), 4.29(2 \mathrm{H}, \mathrm{t}$, $J=7.2 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{s}), 7.12(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.27(1 \mathrm{H}$, dd, $J=4.5,8.1 \mathrm{~Hz}), 7.29(1 \mathrm{H}, \mathrm{s}), 8.04(1 \mathrm{H}, \mathrm{dd}, J=1.5$, $8.4 \mathrm{~Hz}), 8.38(1 \mathrm{H}, \mathrm{s}), 8.42(1 \mathrm{H}, \mathrm{dd}, J=1.5,4.8 \mathrm{~Hz})$.

General Preparation of Cephalosporins

7β-[2-(5-Amino-1,2,4-thiadiazol-3-yl)-2(Z)-ethoxy-iminoacetamido]-3-[1-(3-methylaminopropyl)-1 H -imidazo [4,5-b]pyridinium-4-yl]methyl-3-cephem-4-carboxylate Sulfate (70 Sulfate, S-3578)
To a suspension of compound II ($102 \mathrm{~g}, 252 \mathrm{mmol}$) in EtOAc (1 liter) was added N-methylmolpholine (28 ml , 254 mmol) at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $-5^{\circ} \mathrm{C}$ for 30 minutes. To the mixture was added acid $\mathbf{I b}$ $(80.67 \mathrm{~g}, 252 \mathrm{mmol})$ and phosphorus oxychloride $(24 \mathrm{ml}$, 264 mmol) at the same temperature, followed by dropwise addition of N-methylmolpholine $(86.7 \mathrm{ml}, 792 \mathrm{mmol})$ at $-27^{\circ} \mathrm{C}$. The reaction mixture was stirred at from $-15^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ for 3 hours. After addition of ice-cold brine (1 liter), the organic phase was washed successively with aqueous NaHCO_{3} and brine, dried over MgSO_{4} and filtered. The filtrate was concentrated in vacuo to give crude IIIb (188 g , 92% purity, 82% yield).

To a solution of imidazopyridine $12(28.9 \mathrm{~g}, 99.8 \mathrm{mmol})$ in DMF (92 ml) was added the chloromethyl derivative IIIb $(81.2 \mathrm{~g}, 99.8 \mathrm{mmol})$ and $\mathrm{NaBr}(20.5 \mathrm{~g}, 199 \mathrm{mmol})$. The reaction mixture was stirred at $5^{\circ} \mathrm{C}$ for 3.5 days. After addition of $\mathrm{MeCN}(50 \mathrm{ml})$, the mixture was poured into 5% NaCl . The precipitate was filtered and dried in vacuo to give a mixture of quaternary ammonium IVb and $\mathbf{V b}$ in the ratio of $61: 13$ determined by HPLC (total 173 g). To 98% $\mathrm{HCO}_{2} \mathrm{H}(170 \mathrm{ml})$, the mixture of IVb and $\mathbf{V b}(173 \mathrm{~g})$ and $62 \% \mathrm{H}_{2} \mathrm{SO}_{4}(511 \mathrm{ml})$ was successively at $0^{\circ} \mathrm{C}$ and stirred at $3^{\circ} \mathrm{C}$ for 1 hour. The reaction mixture was poured into a mixture of 2-propanol (8.5 liters) and acetone (1 liter). The precipitate was collected by filtration and dissolved in $\mathrm{H}_{2} \mathrm{O}$ $(300 \mathrm{ml})$. The solution was chromatographed on HP-20 resin. The target product was eluted with 2% $\mathrm{MeCN} / 0.001 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$. The solution containing the target product was adjusted to pH 4.5 by addition of poly(4vinylpyridine) and filtered. The filtrate was concentrated and lyophilized to give 70 sulfate (crude $\mathbf{S - 3 5 7 8}$) (31 g , 42% yield from IIIb); IR (KBr) $\mathrm{cm}^{-1} 1779,1671,1634$, 1527, 1488, 1464; Anal Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{10} \mathrm{O}_{5} \mathrm{~S}_{2}$. $0.54 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 4.6 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 39.14, \mathrm{H} 5.24$, N 19.02, S 11.06. Found: C 39.22, H 5.18, N 19.22, S 10.88.

To a solution of the described crude $\mathrm{S}-3578$ (70 sulfate) 4.0 g in $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{ml})$ was added $10 \mathrm{~N}_{2} \mathrm{SO}_{4}(0.65 \mathrm{ml})$ and THF $(13 \mathrm{ml})$ at $10^{\circ} \mathrm{C}$. After standing at the same
temperature for a week, the crystallized solid was filtered and dried under reduced pressure $(15 \mathrm{mmHg}$ at room temperature for 1.5 hour) to afford pure $\mathbf{S - 3 5 7 8}(1.67 \mathrm{~g}$, 37.3%); MP $>200^{\circ} \mathrm{C}$; Anal Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{10} \mathrm{O}_{5} \mathrm{~S}_{2}$. $\mathrm{H}_{2} \mathrm{SO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 34.95$, H 5.38, N 16.98, S 11.66 . Found: C 34.67, H 5.30, N 17.16, S 11.72; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.30$ $(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.42(2 \mathrm{H}, \mathrm{m}), 2.74(3 \mathrm{H}, \mathrm{s}), 3.16(2 \mathrm{H}, \mathrm{t}$ like, $J=8.1 \mathrm{~Hz}$), 3.34 and $3.64(2 \mathrm{H}, \mathrm{ABq}, J=18.3 \mathrm{~Hz}), 4.33$ $(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 4.65(2 \mathrm{H}, \mathrm{t}$ like, $J=7.5 \mathrm{~Hz}), 5.25(1 \mathrm{H}, \mathrm{d}$, $J=4.8 \mathrm{~Hz}), 5.71$ and $5.94(2 \mathrm{H}, \mathrm{ABq}, J=15 \mathrm{~Hz}), 5.87(1 \mathrm{H}$, d, $J=4.8 \mathrm{~Hz}), 7.89(1 \mathrm{H}, \mathrm{dd}, J=6.6,8.1 \mathrm{~Hz}), 8.82(1 \mathrm{H}, \mathrm{d}$, $J=8.1 \mathrm{~Hz}), 8.86(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 8.89(1 \mathrm{H}, \mathrm{s}) ;$ Anal Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{10} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 34.95$, H $5.38, \mathrm{~N}$ 16.98, S 11.66. Found: C 34.67, H 5.30, N 17.16, S 11.72.

The other cephalosporins ($\mathbf{1}, \mathbf{5 8} \sim \mathbf{6 9}, \mathbf{7 1} \sim \mathbf{8 9}$) were prepared by a procedure similar to that described for the preparation of S-3578 (70 sulfate).

Compound 1

Compound 1 was obtained in 28\% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) δ $1.18(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.10$ and $3.50(2 \mathrm{H}, \mathrm{ABq}, J=18 \mathrm{~Hz})$, $4.10(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 5.12(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 5.62(2 \mathrm{H}$, $\mathrm{ABq}, J=14.4 \mathrm{~Hz}), 5.79(1 \mathrm{H}, \mathrm{dd}, J=5.0,8.5 \mathrm{~Hz}), 7.54(1 \mathrm{H}$, dd, $J=6.4,8.0 \mathrm{~Hz}), 8.10(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.55(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz})$, $8.56(1 \mathrm{H}, \mathrm{s}), 8.72(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}), 9.53(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}) ;$ IR (KBr) $\mathrm{cm}^{-1} 1773,1665,1609,1527,1388$.

Compound 58

Compound 58 was obtained in 58% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 1.18(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 2.95$ and $3.52(2 \mathrm{H}, \mathrm{ABq}$, $J=17.4 \mathrm{~Hz}), 4.06(3 \mathrm{H}, \mathrm{s}), 4.04 \sim 4.19(2 \mathrm{H}, \mathrm{m}), 5.02(1 \mathrm{H}, \mathrm{d}$, $J=5.1 \mathrm{~Hz}), 5.64 \sim 5.69(3 \mathrm{H}, \mathrm{m}), 7.95(1 \mathrm{H}, \mathrm{dd}, J=6.3$, $8.1 \mathrm{~Hz}), 8.13(2 \mathrm{H}, \mathrm{br}$ s), $8.88(1 \mathrm{H}, \mathrm{dd}, J=0.9,8.1 \mathrm{~Hz}), 9.04$ $(1 \mathrm{H}, \mathrm{s}), 9.44(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 9.71(1 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz})$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 1774,1671,1614,1528$.

Compound 59

Compound 59 was obtained in 62% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 1.18(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.51(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 2.99$ and $3.53(2 \mathrm{H}, \mathrm{ABq}, J=17.4 \mathrm{~Hz}), 4.10(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 4.51$ $(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 5.01(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}), 5.66 \sim 5.69(3 \mathrm{H}$, m), $7.94(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 8.12(2 \mathrm{H}, \mathrm{brs}), 8.94(1 \mathrm{H}, \mathrm{d}$, $J=8.1 \mathrm{~Hz}), 9.12(1 \mathrm{H}, \mathrm{s}), 9.44(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 9.67(1 \mathrm{H}$, d, $J=6.3 \mathrm{~Hz}$); IR (KBr) $\mathrm{cm}^{-1} 1775,1669,1634,1613$, 1526.

Compound 60

Compound 60 was obtained in 36% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}$-NMR (DMSO- d_{6}) $\delta 0.91(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.2(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.9(2 \mathrm{H}$, $\mathrm{m}), 3.0 \sim 3.6(2 \mathrm{H}, \mathrm{m}), 4.1(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 4.4(2 \mathrm{H}, \mathrm{t}$, $J=6.9 \mathrm{~Hz}), 5.0(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 5.6$ and $6.0(2 \mathrm{H}, \mathrm{ABq}$, $J=14 \mathrm{~Hz}), 5.8(1 \mathrm{H}, \mathrm{dd}, J=5.1,8.4 \mathrm{~Hz}), 8.0(1 \mathrm{H}, \mathrm{dd}, J=6.9$, $8.4 \mathrm{~Hz}), 8.1(2 \mathrm{H}, \mathrm{bs}), 9.0(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 9.1(1 \mathrm{H}, \mathrm{d}$, $J=6.9 \mathrm{~Hz}), 9.13(1 \mathrm{H}, \mathrm{s}), 9.5(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$; IR (KBr) $\mathrm{cm}^{-1} 1781,1676,1632,1523$.

Compound 61

Compound 61 was obtained in 22% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}$-NMR (DMSO- d_{6}) $\delta 0.5 \sim 0.6(4 \mathrm{H}, \mathrm{m}), 1.21(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.21(3 \mathrm{H}, \mathrm{t}$, $J=7.2 \mathrm{~Hz}), 1.4(1 \mathrm{H}, \mathrm{m}), 3.3$ and $3.5(2 \mathrm{H}, \mathrm{ABq}, J=17 \mathrm{~Hz})$, $4.15(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.4(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 5.1(1 \mathrm{H}, \mathrm{d}$, $J=5.1 \mathrm{~Hz}), 5.6$ and $6.1(2 \mathrm{H}, \mathrm{ABq}, J=14.4 \mathrm{~Hz}), 5.8(1 \mathrm{H}, \mathrm{dd}$, $J=5.1,8.8 \mathrm{~Hz}), 8.0(1 \mathrm{H}, \mathrm{dd}, J=6,7.8 \mathrm{~Hz}), 8.1(2 \mathrm{H}, \mathrm{bs}), 8.9$ $(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}), 9.0(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 9.1(1 \mathrm{H}, \mathrm{s}), 9.5$ $(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}) ;$ IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 1781,1675,1633,1524$.

Compound 62

Compound 62 was obtained in 38\% yield from IIIb using TiCl_{4}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO$\left.d_{6}+\mathrm{D}_{2} \mathrm{O}\right) \delta 1.16(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.12$ and $3.50(2 \mathrm{H}$, $\mathrm{ABq}, J=17.1 \mathrm{~Hz}), 4.10(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 5.0(1 \mathrm{H}, \mathrm{d}$, $J=4.8 \mathrm{~Hz}), 5.64$ and $5.76(2 \mathrm{H}, \mathrm{ABq}, J=14.4 \mathrm{~Hz}), 5.69(1 \mathrm{H}$, d, $J=4.8 \mathrm{~Hz}), 8.02(1 \mathrm{H}, \mathrm{m}), 8.10(1 \mathrm{H}, \mathrm{d}, J=59.1 \mathrm{~Hz}), 8.92$ $(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 9.34(1 \mathrm{H}, \mathrm{s}), 9.50(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz})$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 1774,1669,1611,1528$.

Compound 63

Compound 63 was obtained in 35 \% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta$ $1.16(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.01$ and $3.56(2 \mathrm{H}, \mathrm{ABq}$, $J=17.7 \mathrm{~Hz}), \quad 3.80(2 \mathrm{H}, \quad \mathrm{t}, \quad J=4.5 \mathrm{~Hz}), 4.08(2 \mathrm{H}, \quad \mathrm{q}$, $J=7.2 \mathrm{~Hz}), 4.55(2 \mathrm{H}, \mathrm{m}), 5.02(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 5.61$ and $5.70(2 \mathrm{H}, \mathrm{ABq}, J=13.5 \mathrm{~Hz}), 5.69(1 \mathrm{H}, \mathrm{dd}, J=5.1,8.4 \mathrm{~Hz})$, $7.91(1 \mathrm{H}, \mathrm{dd}, J=6.0,8.1 \mathrm{~Hz}), 8.15(2 \mathrm{H}, \mathrm{br} s), 8.91(1 \mathrm{H}, \mathrm{d}$, $J=8.1 \mathrm{~Hz}), 9.05(1 \mathrm{H}, \mathrm{s}), 9.45(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 9.51(1 \mathrm{H}$, d, $J=6.0 \mathrm{~Hz}$): IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 1774,1670$, br 1613, 1527.

Compound 64

Compound 64 was obtained in 43% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta$ $1.29(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 3.28$ and $3.61(2 \mathrm{H}, \mathrm{ABq}, J=18 \mathrm{~Hz})$, $4.31(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 5.22(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 5.40(2 \mathrm{H}, \mathrm{s})$, 5.66 and $5.91(2 \mathrm{H}, \mathrm{ABq}, J=14.6 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{d}$, $J=4.6 \mathrm{~Hz}), 7.89(1 \mathrm{H}, \mathrm{dd}, J=6.2,8.4 \mathrm{~Hz}), 8.69(1 \mathrm{H}, \mathrm{d}$,
$J=8.4 \mathrm{~Hz}), 8.83(1 \mathrm{H}, \mathrm{s}), 8.90(1 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz})$; IR (KBr) $\mathrm{cm}^{-1} 1770,1684,1613,1525$.

Compound 65 Hydrochloride

Compound 65 hydrochloride was obtained in 35% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}$-NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.30(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 3.31$ and $3.63(2 \mathrm{H}, \mathrm{ABq}$, $J=18 \mathrm{~Hz}), 3.67(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 4.33(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz})$, $4.90(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 5.22(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 5.63$ and $5.94(2 \mathrm{H}, \mathrm{ABq}, J=14.8 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 7.92$ ($1 \mathrm{H}, \mathrm{dd}, J=6.4,8.2 \mathrm{~Hz}$), 8.82~8.89 ($2 \mathrm{H}, \mathrm{m}$), $8.91(1 \mathrm{H}, \mathrm{s})$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 1772,1669,1634,1524,1488,1464$.

Compound 66 Sulfate

Compound 66 sulfate was obtained in 50% yield from IIIb using $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{HCO}_{2} \mathrm{H}$ for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.31(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 1.45(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz})$, 3.32 and $3.63(2 \mathrm{H}, \mathrm{ABq}, J=18 \mathrm{~Hz}), 4.07(1 \mathrm{H}, \mathrm{q}$ like, $J=6.6 \mathrm{~Hz}), 4.36(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.8(2 \mathrm{H}, \mathrm{m}), 5.22(1 \mathrm{H}$, d, $J=4.5 \mathrm{~Hz}), 5.63$ and $5.93(2 \mathrm{H}, \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 5.86$ $(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}), 7.93(1 \mathrm{H}, \mathrm{dd}, J=6.6,7.5 \mathrm{~Hz}), 8.84(1 \mathrm{H}$, d, $J=7.5 \mathrm{~Hz}), 8.88(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 8.92(1 \mathrm{H}, \mathrm{s})$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 3406,2979,1772,1614,1527$.

Compound 67 Sulfate

Compound 67 sulfate was obtained in 70% yield from IIIc using $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{HCO}_{2} \mathrm{H}$ for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right)$ $\delta 1.11(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.30(3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.84(2 \mathrm{H}$, $\mathrm{m}), 3.32$ and $3.63(2 \mathrm{H}, \mathrm{ABq}, J=18 \mathrm{~Hz}), 3.92(1 \mathrm{H}, \mathrm{m}), 4.32$ $(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 5.22(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 5.66$ and 5.96 $(2 \mathrm{H}, \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 7.93(1 \mathrm{H}$, dd, $J=6.3,8.1 \mathrm{~Hz}), 8.83(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 8.88(1 \mathrm{H}, \mathrm{d}$, $J=6.3 \mathrm{~Hz}), 8.92(1 \mathrm{H}, \mathrm{s})$; IR (KBr) cm ${ }^{-1} 1776,1671,1634$, 1528, 1488, 1463.

Compound 68 Hydrochloride

Compound 68 hydrochloride was obtained in 31% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.28(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 2.36(2 \mathrm{H}, \mathrm{m}), 3.11(2 \mathrm{H}, \mathrm{t}$, $J=8.6 \mathrm{~Hz}), 3.28$ and $3.61(2 \mathrm{H}, \mathrm{ABq}, J=18.0 \mathrm{~Hz}), 4.61(2 \mathrm{H}$, $\mathrm{t}, J=7.0 \mathrm{~Hz}), 4.30(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}), 5.21(1 \mathrm{H}, \mathrm{d}$, $J=4.6 \mathrm{~Hz}), 5.60$ and $5.87(2 \mathrm{H}, \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 7.86(1 \mathrm{H}$, dd, $J=8.2,6.2 \mathrm{~Hz}), 8.78(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 8.81(1 \mathrm{H}, \mathrm{d}$, $J=6.2 \mathrm{~Hz}), 8.85(1 \mathrm{H}, \mathrm{s})$; IR (KBr) $\mathrm{cm}^{-1} 1772,1615,1524$, 1387.

Compound 69 Hydrochloride

Compound 69 hydrochloride was obtained in 27% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.30(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.75(2 \mathrm{H}, \mathrm{m}), 2.05(2 \mathrm{H}, \mathrm{m})$,
$3.04(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 3.31$ and $3.64(2 \mathrm{H}, \mathrm{ABq}$, $J=18.1 \mathrm{~Hz}), 4.33(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 4.57(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz})$, $5.23(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 5.64$ and $5.89(2 \mathrm{H}, \mathrm{ABq}$, $J=14.8 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 7.86(1 \mathrm{H}, \mathrm{dd}, J=8.2$, $6.6 \mathrm{~Hz}), 8.78(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 8.81(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz})$, $8.85(1 \mathrm{H}, \mathrm{s})$; IR (KBr) cm ${ }^{-1} 1774,1671,1617,1523,1489$, 1462.

Compound 71 Sulfate

Compound 71 sulfate was obtained in 37% yield from IIIc using $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{HCO}_{2} \mathrm{H}$ for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right)$ $\delta 1.30(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 2.46(2 \mathrm{H}, \mathrm{m}), 2.91(6 \mathrm{H}, \mathrm{s}), 3.27$ $(2 \mathrm{H}, \mathrm{bs}), 3.31$ and $3.63(2 \mathrm{H}, \mathrm{ABq}, J=17.7 \mathrm{~Hz}), 4.32(2 \mathrm{H}, \mathrm{q}$, $J=7.2 \mathrm{~Hz}), 4.63(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 5.23(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz})$, 5.64 and $5.89(2 \mathrm{H}, \mathrm{ABq}, J=15 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{d}$, $J=4.8 \mathrm{~Hz}), 7.89(1 \mathrm{H}, \mathrm{dd}, J=6.6,8.1 \mathrm{~Hz}), 8.80(1 \mathrm{H}, \mathrm{d}$, $J=8.1 \mathrm{~Hz}), 8.86(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 8.88(1 \mathrm{H}, \mathrm{s}) ;$ IR (KBr) $\mathrm{cm}^{-1} 1774,1670,1610,1527,1488,1463$.

Compound 72 Hydrochloride

Compound 72 hydrochloride was obtained in 33% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.29(6 \mathrm{H}, \mathrm{m}), 2.40(2 \mathrm{H}, \mathrm{m}), 3.12(4 \mathrm{H}, \mathrm{m}), 3.34$ and $3.65(2 \mathrm{H}, \mathrm{ABq}, J=18.4 \mathrm{~Hz}), 4.33(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.64$ $(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 5.25(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 5.70$ and $5.94(2 \mathrm{H}$, $\mathrm{ABq}, J=14.8 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 7.89(1 \mathrm{H}, \mathrm{dd}$, $J=8.2 \mathrm{~Hz}, 6.4 \mathrm{~Hz}), 8.81(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 8.85(1 \mathrm{H}, \mathrm{d}$, $J=6.4 \mathrm{~Hz}$), $8.89(1 \mathrm{H}, \mathrm{s})$; IR (KBr) cm ${ }^{-1} 1779,1671,1633$, 1526, 1488, 1463.

Compound 73 Hydrochloride

Compound 73 hydrochloride was obtained in 26% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $\left.d_{6}\right) \delta 0.68(2 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}), 0.88(2 \mathrm{H}, \mathrm{bs}), 1.18$ $(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{H}), 2.31$ (center, $2 \mathrm{H}, \mathrm{m}$), $2.61(1 \mathrm{H}, \mathrm{m}), 3.03$ $(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.08$ and $3.47(2 \mathrm{H}, \mathrm{ABq}, J=16 \mathrm{~Hz}), 4.10$ $(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.64(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 5.04(1 \mathrm{H}, \mathrm{d}$, $J=4.8 \mathrm{~Hz}), 5.56$ and $5.74(2 \mathrm{H}, \mathrm{ABq}, J=14.4 \mathrm{~Hz}), 5.75(1 \mathrm{H}$, d, $J=4.8 \mathrm{~Hz}), 7.87(1 \mathrm{H}, \mathrm{dd}, J=6.2,8.1 \mathrm{~Hz}), 8.12(2 \mathrm{H}, \mathrm{bs})$, $9.00(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 9.16(1 \mathrm{H}, \mathrm{s}), 9.26(1 \mathrm{H}, \mathrm{d}$, $J=6.2 \mathrm{~Hz}), 9.46(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 1774$, 1670, 1635, 1612, 1527.

Compound 74 Hydrochloride

Compound 74 hydrochloride was obtained in 12% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.30(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 2.42(2 \mathrm{H}, \mathrm{m}), 3.22(4 \mathrm{H}$, $\mathrm{m}), 3.31$ and $3.64(2 \mathrm{H}, \mathrm{ABq}, J=18.2 \mathrm{~Hz}), 3.83(2 \mathrm{H}, \mathrm{t}$, $J=5.4 \mathrm{~Hz}), 4.33(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 4.65(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz})$, $5.23(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 5.62$ and $5.90(2 \mathrm{H}, \mathrm{ABq}$,
$J=14.6 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 7.89(1 \mathrm{H}, \mathrm{dd}, J=8.1$, $6.6 \mathrm{~Hz}), 8.80(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 8.84(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz})$, $8.88(1 \mathrm{H}, \mathrm{s}) ;$ IR (KBr) cm ${ }^{-1}$ 1773, 1669, 1611, 1527, 1388.

Compound 75 Hydrochloride

Compound 75 hydrochloride was obtained in 14% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.31(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 2.45(2 \mathrm{H}, \mathrm{m}), 3.42(6 \mathrm{H}, \mathrm{m})$, $4.33(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 4.66(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 5.23(1 \mathrm{H}, \mathrm{d}$, $J=5 \mathrm{~Hz}), 5.61$ and $5.91(2 \mathrm{H}, \mathrm{ABq}, J=14.8 \mathrm{~Hz}), 5.85(1 \mathrm{H}$, d, $J=5 \mathrm{~Hz}), 7.89(1 \mathrm{H}, \mathrm{dd}, J=8 \mathrm{~Hz}, 6.4 \mathrm{~Hz}), 8.80(1 \mathrm{H}, \mathrm{d}$, $J=8 \mathrm{~Hz}), 8.84(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 8.88(1 \mathrm{H}, \mathrm{s}) ;$ IR (KBr) $\mathrm{cm}^{-1} 1772,1668,1610,1524,1488,1462$.

Compound 76 Sulfate

Compound 76 sulfate was obtained in 51% yield from IIIc using $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{HCO}_{2} \mathrm{H}$ for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right)$ $\delta 1.29(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 2.30(2 \mathrm{H}, \mathrm{m}), 3.29(2 \mathrm{H}, \mathrm{t}$, $J=6.3 \mathrm{~Hz}), 3.30$ and $3.63(2 \mathrm{H}, \mathrm{ABq}, J=17.7 \mathrm{~Hz}), 4.32(2 \mathrm{H}$, q, $J=6.9 \mathrm{~Hz}), 4.61(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 5.23(1 \mathrm{H}, \mathrm{d}$, $J=4.8 \mathrm{~Hz}), 5.64$ and $5.90(2 \mathrm{H}, \mathrm{ABq}, J=15.0 \mathrm{~Hz}), 5.84(1 \mathrm{H}$, d, $J=4.8 \mathrm{~Hz}), 7.88(1 \mathrm{H}, \mathrm{dd}, J=6.3,7.8 \mathrm{~Hz}), 8.78(1 \mathrm{H}, \mathrm{d}$, $J=9.0 \mathrm{~Hz}), 8.84(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 8.87(1 \mathrm{H}, \mathrm{s}) ;$ IR (KBr) $\mathrm{cm}^{-1} 1774,1670,1633,1527,1488,1461$.

Compound 77 Hydrochloride

Compound 77 hydrochloride was obtained in 45% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\right.$ DMSO- $\left.d_{6}+\mathrm{D}_{2} \mathrm{O}\right) \delta 1.20(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.31(3 \mathrm{H}, \mathrm{d}$, $J=6.6 \mathrm{~Hz}), 2.10 \sim 2.40(2 \mathrm{H}, \mathrm{m}), 3.17$ and $3.51(2 \mathrm{H}, \mathrm{ABq}$, $J=18 \mathrm{~Hz}), 3.25(1 \mathrm{H}, \mathrm{m}), 4.13(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 4.61(2 \mathrm{H}$, $\mathrm{t}, J=7.8 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 5.61$ and $5.82(2 \mathrm{H}$, ABq, $J=13.8 \mathrm{~Hz}), 5.75(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 7.90(1 \mathrm{H}, \mathrm{dd}$, $J=6.3,8.1 \mathrm{~Hz}), 8.94(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 9.10(1 \mathrm{H}, \mathrm{s}), 9.25$ $(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz})$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 1774,1669,1633,1525$, 1489, 1462.

Compound 78 Hydrochloride

Compound 78 hydrochloride was obtained in 15% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\right.$ DMSO-d $\left.d_{6}+\mathrm{D}_{2} \mathrm{O}\right) \delta 1.30(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.44(3 \mathrm{H}, \mathrm{d}$, $J=6.6 \mathrm{~Hz}), 2.2 \sim 2.6(2 \mathrm{H}, \mathrm{m}), 3.32$ and $3.64(2 \mathrm{H}, \mathrm{ABq}$, $J=18 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{m}), 4.32(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.65(2 \mathrm{H}$, $\mathrm{t}, J=7.5 \mathrm{~Hz}), 5.25(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}), 5.7$ and $5.94(2 \mathrm{H}$, $\mathrm{ABq}, J=14.7 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}), 7.89(1 \mathrm{H}, \mathrm{dd}$, $J=6.0,8.4 \mathrm{~Hz}), 8.81(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 8.85(1 \mathrm{H}, \mathrm{d}$, $J=6.3 \mathrm{~Hz}), 8.90(1 \mathrm{H}, \mathrm{s}) ;$ IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 1772,1608,1525$, 1488, 1462.

Compound 79 Hydrochloride

Compound 79 hydrochloride was obtained in 33\% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 0.85(2 \mathrm{H}, \mathrm{bs}), 1.09(2 \mathrm{H}, \mathrm{bs}), 1.29(3 \mathrm{H}, \mathrm{t}$, $J=7.2 \mathrm{~Hz}), 2.40(2 \mathrm{H}, \mathrm{m}), 3.30$ and $3.63(2 \mathrm{H}, \mathrm{ABq}$, $J=18 \mathrm{~Hz}), 4.33(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.76(2 \mathrm{H}, \mathrm{m}), 5.24(1 \mathrm{H}$, d, $J=5 \mathrm{~Hz}), 5.66$ and $5.91(2 \mathrm{H}, \mathrm{ABq}, J=13.8 \mathrm{~Hz}), 7.87$ $(1 \mathrm{H}, \mathrm{m}), 8.79(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 8.85(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz})$, $8.90(1 \mathrm{H}, \mathrm{s})$; IR (KBr) cm ${ }^{-1} 1779,1671,1633,1523,1488$, 1463.

Compound 80 Hydrochloride

Compound 80 hydrochloride was obtained in 28% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\right.$ DMSO- $\left.d_{6}+\mathrm{D}_{2} \mathrm{O}\right) \delta 1.20(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.90 \sim 2.28$ $(2 \mathrm{H}, \mathrm{m}), 3.24(1 \mathrm{H}, \mathrm{m}), 3.34$ and $3.43(2 \mathrm{H}, \mathrm{ABq}$, $J=19.2 \mathrm{~Hz}), 4.14(2 \mathrm{H}, \quad \mathrm{q}, \quad J=7.2 \mathrm{~Hz}), 4.66(2 \mathrm{H}, \mathrm{t}$, $J=8.7 \mathrm{~Hz}), 5.06(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 5.59$ and $6.01(2 \mathrm{H}$, $\mathrm{ABq}, J=14.1 \mathrm{~Hz}), 5.83(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 7.95(1 \mathrm{H}, \mathrm{dd}$, $J=7.5,10.8 \mathrm{~Hz}), 8.99(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 9.05(1 \mathrm{H}, \mathrm{d}$, $J=10.8 \mathrm{~Hz}), 9.07(1 \mathrm{H}, \mathrm{s}) ; \operatorname{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 1773,1670,1633$, 1526, 1489, 1462.

Compound 81 Sulfate

Compound 81 sulfate was obtained in 43% yield from IIIc using $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{HCO}_{2} \mathrm{H}$ for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right)$ $\delta 1.29(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 2.64(2 \mathrm{H}, \mathrm{m}), 3.30$ and $3.63(2 \mathrm{H}$, $\mathrm{ABq}, J=18 \mathrm{~Hz}), 4.25(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 4.32(2 \mathrm{H}, \mathrm{q}$, $J=7.2 \mathrm{~Hz}), 4.6 \sim 4.8(1 \mathrm{H}, \mathrm{m}) .5 .24(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 5.65$ and $5.91(2 \mathrm{H}, \mathrm{ABq}, J=14.7 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz})$, $7.89(1 \mathrm{H}, \mathrm{dd}, J=6.6,8.1 \mathrm{~Hz}), 8.81(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.85$ $(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 8.89(1 \mathrm{H}, \mathrm{s})$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 1774,1689$, 1632, 1526, 1490, 1462.

Compound 82 Hydrochloride

Compound $\mathbf{8 2}$ hydrochloride was obtained in 28% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.30(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 3.31$ and $3.64(2 \mathrm{H}, \mathrm{ABq}$, $J=17.6 \mathrm{~Hz}), 5.23(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 5.64$ and $5.91(2 \mathrm{H}$, $\mathrm{ABq}, J=15.4 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 7.90(1 \mathrm{H}, \mathrm{dd}$, $J=7.8,6.4 \mathrm{~Hz}), 8.80(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 8.86(1 \mathrm{H}, \mathrm{d}$, $J=6.4 \mathrm{~Hz}), 8.89(1 \mathrm{H}, \mathrm{s}) ;$ IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 1773,1670,1616$, 1524, 1487, 1463, 1450.

Compound 83 Hydrochloride

Compound $\mathbf{8 3}$ hydrochloride was obtained in 24% yield from IIIb using AlCl_{3}-anisole for deprotection, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.30(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 2.68 \sim 2.80(1 \mathrm{H}, \mathrm{m})$, $2.85 \sim 2.97(1 \mathrm{H}, \mathrm{m}), 3.31$ and $3.63(2 \mathrm{H}, \mathrm{ABq}, J=18 \mathrm{~Hz})$, $3.63 \sim 3.88(3 \mathrm{H}, \mathrm{m}), 4.08 \sim 4.19(1 \mathrm{H}, \mathrm{m}), 4.33(2 \mathrm{H}, \mathrm{q}$,
$J=6.9 \mathrm{~Hz}), 5.22(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}), 5.62$ and $5.94(2 \mathrm{H}$, $\mathrm{ABq}, J=14.4 \mathrm{~Hz}), 5.62 \sim 5.72(1 \mathrm{H}, \mathrm{m}), 5.85(1 \mathrm{H}, \mathrm{d}$, $J=4.5 \mathrm{~Hz}), 7.92(1 \mathrm{H}, \mathrm{dd}, J=6.3,8.4 \mathrm{~Hz}), 8.85(1 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 8.89(1 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}), 9.03(1 \mathrm{H}, \mathrm{s}) ;$ IR (KBr) $\mathrm{cm}^{-1} 3398,2982,1771,1668,1611,1461,1391$.

Compound 84 Hydrochloride

Compound $\mathbf{8 4}$ hydrochloride was obtained in 38% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d ${ }_{6}$) $\delta 1.17(3 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 2.69$ (center, $2 \mathrm{H}, \mathrm{m}$), 3.15 and $3.47(2 \mathrm{H}, \mathrm{ABq}, J=18 \mathrm{~Hz}), 3.47 \sim 3.81(4 \mathrm{H}, \mathrm{m})$, $4.10(2 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}), 5.04(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 5.31$ and $5.88(2 \mathrm{H}, \mathrm{ABq}, J=13.5 \mathrm{~Hz}), 5.60(1 \mathrm{H}, \mathrm{m}), 5.80(1 \mathrm{H}, \mathrm{dd}$, $J=5.1,8.4 \mathrm{~Hz}), 7.94(1 \mathrm{H}, \mathrm{dd}, J=7.2,7.5 \mathrm{~Hz}), 8.12(2 \mathrm{H}, \mathrm{s})$, $9.03 \sim 9.05(2 \mathrm{H}, \mathrm{m}), 9.05(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1}$ 1777, 1677, 1636, 1528, 1463, 1406.

Compound 85 Hydrochloride

Compound 85 hydrochloride was obtained in 25% yield from IIIb using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.30(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.50(4 \mathrm{H}, \mathrm{m}), 3.33(3 \mathrm{H}$, m), $3.70(3 \mathrm{H}, \mathrm{m}), 4.33(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 5.07(1 \mathrm{H}, \mathrm{m})$, $5.23(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 5.64$ and $5.91(2 \mathrm{H}, \mathrm{ABq}$, $J=14.7 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 7.89(1 \mathrm{H}, \mathrm{m}), 8.85$ $(2 \mathrm{H}, \mathrm{m}), 8.98(1 \mathrm{H}, \mathrm{s}) ; \operatorname{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 1773,1670,1616$, 1524, 1460.

Compound 86 Hydrochloride

Compound $\mathbf{8 6}$ hydrochloride was obtained in 39% yield from IIIa using AlCl_{3}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.40(2 \mathrm{H}, \mathrm{m}), 2.73(3 \mathrm{H}, \mathrm{s}), 317(2 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz})$, 3.30 and $3.64(2 \mathrm{H}, \mathrm{ABq}, J=17.9 \mathrm{~Hz}), 4.05(3 \mathrm{H}, \mathrm{s}), 4.64$ $(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 5.22(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 5.62$ and 5.89 $(2 \mathrm{H}, \mathrm{ABq}, J=14.6 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 7.88(1 \mathrm{H}$, dd, $J=8.6,6.6 \mathrm{~Hz}), 8.80(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 8.84(1 \mathrm{H}, \mathrm{d}$, $J=6.6 \mathrm{~Hz}), 8.88(1 \mathrm{H}, \mathrm{s}) ;$ IR (KBr) cm ${ }^{-1} 1773,1669,1611$, 1525, 1389.

Compound 87 Sulfate

Compound 87 sulfate was obtained in 41% yield from IIId using $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{HCO}_{2} \mathrm{H}$ for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $\left.d_{6}+\mathrm{D}_{2} \mathrm{O}\right) \delta 1.19(6 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 2.29(2 \mathrm{H}, \mathrm{m})$, $2.25(3 \mathrm{H}, \mathrm{s}), 2.99(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 3.10,3.53(2 \mathrm{H}, \mathrm{ABq}$, $J=18 \mathrm{~Hz}), 4.35(1 \mathrm{H}, \mathrm{m}), 4.61(2 \mathrm{H}, \mathrm{bs}), 5.05(1 \mathrm{H}, \mathrm{d}$, $J=4.8 \mathrm{~Hz}), 5.59,5.75(2 \mathrm{H}, \mathrm{ABq}, J=13.5 \mathrm{~Hz}), 5.75(1 \mathrm{H}, \mathrm{d}$, $J=4.8 \mathrm{~Hz}), 7.86(1 \mathrm{H}, \mathrm{dd}, J=6.0,8.1 \mathrm{~Hz}), 8.94(1 \mathrm{H}, \mathrm{d}$, $J=8.1 \mathrm{~Hz}), 9.11(1 \mathrm{H}, \mathrm{s}), 9.31(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz})$; IR (KBr) $\mathrm{cm}^{-1} 1776,1671,1633,1525,1488,1463$.

Compound 88 Hydrochloride

Compound $\mathbf{8 8}$ hydrochloride was obtained in 31% yield from IIIe using TiCl_{4}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.40(2 \mathrm{H}, \mathrm{m}), 2.73(3 \mathrm{H}, \mathrm{s}), 317(2 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz})$, 3.29 and $3.64(2 \mathrm{H}, \mathrm{ABq}, J=18.0 \mathrm{~Hz}), 4.63(2 \mathrm{H}, \mathrm{t}$, $J=7.2 \mathrm{~Hz}), 5.24(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 5.63$ and $5.90(2 \mathrm{H}$, $\mathrm{ABq}, J=14.2 \mathrm{~Hz}), 5.82(2 \mathrm{H}, \mathrm{d}, J=54.2 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{d}$, $J=4.6 \mathrm{~Hz}), 7.87(1 \mathrm{H}, \mathrm{dd}, J=8.2,6.2 \mathrm{~Hz}), 8.79(1 \mathrm{H}, \mathrm{d}$, $J=8.2 \mathrm{~Hz}), 8.85(1 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}), 8.87(1 \mathrm{H}, \mathrm{s})$; IR (KBr) $\mathrm{cm}^{-1} 1774,1671,1617,1525,1393$.

Compound 89 Hydrochloride

Compound 89 hydrochloride was obtained in 26% yield from IIIf using TiCl_{4}-anisole for deprotection; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 2.43(2 \mathrm{H}, \mathrm{m}), 2.75(3 \mathrm{H}, \mathrm{s}), 319(2 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz})$, 3.32 and $3.65(2 \mathrm{H}, \mathrm{ABq}, J=18.0 \mathrm{~Hz}), 4.66(6 \mathrm{H}, \mathrm{m}), 5.26$ $(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 5.65$ and $5.92(2 \mathrm{H}, \mathrm{ABq}, J=14.6 \mathrm{~Hz})$, $5.87(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 7.90(1 \mathrm{H}, \mathrm{dd}, J=8.4 \mathrm{~Hz}, 6.3 \mathrm{~Hz})$, $8.81(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.87(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 8.89(1 \mathrm{H}$, s); IR (KBr) cm ${ }^{-1} 1774,1671,1615,1526,1387$.

Acknowledgements

The authors are grateful to Prof. J. Shimada, St. Marianna Univ. Sch. of Med., and Prof. S. Kuwahara, Toho Univ., for their informative discussions.

Reference

1) Lattrell, R.; J. Blumbach, W. Duerckheimer, H.-W. Fehlhaber, K. Fleischmann, R. Kirrstetter, B. Mencke, K.-H. Scheunemann, E. Schrinner, W. Schwab, K. Seeger, G. Sebert \& M. Wieduwilt: Synthesis and structure-activity relationships in the cefpirome series. I. 7-[2-(2-Aminothiazol-4-yl)-2-(Z)-oxyiminoacetamido]-3-[(substituted-1-pyridinio)-methyl]-ceph-3-em-4-carboxylates. J. Antibiotics 41: 1374~1394, 1988
2) Naito, T.; S. Aburaki, H. Kamachi, Y. Narita, J. Okumura \& H. Kawaguchi: Synthesis and structure-
activity relationships of a new series of cephalosporins, BMY-28142 and related compounds. J. Antibiotics 39: 1092~1107, 1986
3) Miyake, A.; Y. Yoshimura, M. Yamaoka, T. Nishimura, N. Hashimoto \& A. Imada: Studies on condensed-heterocyclic azolium cephalosporins. IV. Synthesis and antibacterial activity of 7β-[2-(5-amino-1,2,4-thiadiazol-3-yl)-2(Z)-alkoxyiminoacetamido]-3(condensedheterocyclic azolium)methyl cephalosporins including SCE-2787. J. Antibiotics 45: 709~720, 1992
4) Mine, Y.; Y. Watanabe, H. Sakamoto, K. Hatano, K. Kuno, Y. Higashi, T. Kamimura, Y. Matsumoto, S. Tawara, F. Matsumoto \& S. Kuwahara: In vitro antibacterial activity of FK037, a novel parenteral broadspectrum cephalosporin. J. Antibiotics 46: 71~87, 1993
5) Matsuoka, K.; Y. Nagatomi, K. Imanishi, M. Matsubara, I. Nakanishi \& H. Watanabe: A study on MRSA infections and replacement of bacteria. Efficacy of vancomycin-ceftazidime combination therapy. Jpn. J. Antibiotics 47: 1363~1368, 1994
6) Purchased from Otsuka Chemical Co., Ltd.
7) Csendes, I.; B. W. Muller \& W. Tosch: Cephalosporin antibiotics. Synthesis and antimicrobial activity of 7β-[2-(5-amino-1,2,4-thiadiazol-3-yl)-2-oxyiminoacetamido]cephalosporin derivatives. J. Antibiotics 36: 1020~1033, 1983
8) Goto, J.; K. Sakane \& T. Teraji: Studies of 7β-[2-(aminoaryl)acetamido]-cephalosporin derivatives III. Synthesis and structure-activity relationships in the aminothiadiazole series. J. Antibiotics 37: 557~571, 1984
9) Kanal, T.; Y. Kal, N. Sato, T. Naito, T. Kamiya, T. Nakamura \& K. Ogura: Efficient preparation of (Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)2-[(fluoromethoxy)imino]acetic acid. Bull. Chem. Soc. Jpn. 66: 2335~ 2338, 1993
10) Khanna, I. K.; R. M. Weier, K. T. Lentz, L. Swenton \& D. C. Lankin: Facile, regioselective syntheses of N alkylated 2,3-diaminopyridines and imidazo[4,5b]pyridines. J. Org. Chem. 60: 960~965, 1995
11) Tsunoda, T.; Y. Yamamiya, \& S. Ito: $1,1^{\prime}-$ (Azodicarbonyl)dipiperidine-tributylphosphine, a new reagent system for Mitsunobu reaction. Tetrahedron Lett. 34: 1639~1642, 1993
12) Drake, B.; M. Patek \& M. Lebl: A convenient preparation of monosubstituted $N, N^{\prime}-\operatorname{di}(\mathrm{Boc})$-protected guanidine. Synthesis: 579~582, 1994
